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SUMMARY

This report presents .a description of the software developed for

WEST-3, a new, all digital, and fully programmable wind turbine simulator

developed by Paragon Pacific Inc.. In addition to the usual complement of

software found in any digital computer, WEST-3 has additional software

modules specialized for the processing of wind turbine simulation models.

In the report, the process of wind turbine simulation on WEST-3 is

described in detail.

The major steps are, the processing of the mathematical models, the

preparation of the constant data, and the use of system software to

generate executable code for running on WEST-3. The mechanics of

reformulation, normalization, and scaling of the mathematical models is

discussed in detail; in particular, the significance of reformulation which

leads to accurate simulations. Descriptions of the preprocessor computer

programs which are used to prepare the constant data needed in the

simulation are given. These programs, in addition to scaling and

normalizing all the constants, relieve the user from having to generate a

large number of constants used in the simulation. Also given in the report

are brief descriptions of the components of the WEST-3 system software:

Translator, Assembler, Linker, and Loader. In common with other digital

computers, the task of the WEST-3 system software is to generate the code

which can be loaded into the machine.

The report contains details of the aeroelastic rotor analysis, which is

the center piece of a wind turbine simulation model. Listings of the

variables, constants, and equations used in the simulation are also given.

vii



i. INTRODUCTION

Paragon Pacific Inc. has developed the WEST-3for the real-time domain
simulation of wind turbines. WEST-3is an all digital, fully programmable,
parallel processing system. It avoids the "hardwired" analog implementation
of the previous WESTsystems. High speed simulation is madepossible by the
parallel processing capability, and full programmability is assured by the
all digital technology. A complete description of the WEST-3system can be
found in References 1 and 2. The details of the WEST-3software are
presented in this report.

The overall performance and usefulness of any simulation system depends
upon the effectiveness of the software; and WEST-3is no exception. The
primary objective of the software developed for WEST-3is to make it easier
for a user to conduct useful wind turbine simulations. To meet this

objective, in addition to the usual complement of software found in any

digital computer, WEST-3 has additional software modules specialized for

the processing of wind turbine simulation models.

Figure 1.1 shows an overall schematic of the WEST-3 simulation process

consisting of,

i. preparation of the simulation model ( rotor and subsystems )

2. preparation of the constant data

3. use of the system software to generate executable code

4. running of the simulation and the inevitable debugging.

Presented in this report are descriptions of the various components of

software required to carry out a wind turbine simulation on WEST-3. The

report closely follows the schematic of Figure I.i, and is organized as

follows:

Section 2 contains descriptions of all the mathematical models used in the

simulation. Reformulation, normalization and scaling, which are of critical

importance in WEST-3 simulations, are discussed in Section 3. A discussion

of variable scale factors is presented in Section 4. Subsequent sections

deal with the preparation of constant data, and the system software

available in WEST-3. Section 7 contains some concluding remarks. A list of

References is given in the last section. Appendices contain some important

details of the aeroelastic rotor analysis, gimbal analysis, and complete

listings of the variables, constants, and equations used in the simulation.
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2. WINDTURBINEMATHEMATICALMODEL

The simulation model of a wind turbine is a mathematical description of
a numberof complex physical phenomenainvolved in the extraction of useful
energy from the system. The full model is formed by combining a numberof
smaller models of the various physical systems in the problem. Figure 2.1
shows the overall configuration of the simulation model. It is a synthesis
of models for the rotor, the air mass, the support (tower), the power
train, and the control system. Figure 2.2 is a more detailed schematic of
the simulation model showing the variables that are passed among the
subsystems.

Appendix A defines the general nomenclature conventions used in this
report. Some of the nomenclature used in this report differs from
conventional practice. Therefore, a study of Appendix A is strongly
recommendedfor an understanding of the equations presented in this report.
Also Table B.I of Appendix B contains the nomenclature pertinent to the
rotor model. A definition of all the variables and constants used in the
simulation model can be found in Appendix F.

Models presented herein have been used in other wind energy system
simulations (see, for example, References 3, 4 and 5). The descriptions of
the models presented in this report are complete, and should not require
references other than standard texts on mechanics and controls. However,
References 3, 4 and 5 do present useful data on more detailed versions of
these models. Someof the major features of the model implemented in WEST-3
are,

I. Three elastic degrees of freedom for each blade
2. Towermodel with six physical (three modal) degrees of freedom
3. Gimballed/Teetering rotor capability
4. Blade tip loss, and flow retardation effects in the rotor
5. Nonlinear wind shear model
6. Bandpasswind gust filters
7. Tower shadowmodel
8. General models for the power train and control system

Due tv^ the modular nature _^; _.e _--i .... _ .... ; _,e _"_I

programmability of WEST-3, alternate models/tasks can be incorporated with

relative ease. Following are descriptions of the subsystems shown in

Figures 2.1 and 2.2.

2.1 Aeroelastic Rotor

Of all the subsystems, the rotor is by far the most complex accounting

for a bulk of the computational load in the simulation. A detailed

description of the aeroelastic rotor model is given in Appendix B. Figure

2.3 shows a simplified schematic of the rotor model. Following is an

outline of the major tasks performed in the rotor model, during numerical

integration, for every azimuthal position of the rotor.

* Compute the aerodynamic loads on the blade by using strip theory.

Each blade is divided into a number of radial segments and radial

stations. The aerodynamic coefficients, as functions of the angle of

attack, are obtained by table look-up.

2-1
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* Determine the effects of elasticity on the blade deflection,

velocity, acceleration, and loading at each radial station.

* Obtain the forces and moments at the rotor hub by a summation of the
loads at all the radial stations of the blade•

* Account for the effects of the rotor hub degrees of freedom, i.e.,

gimbal (teetering), if present in the model.

2.2 Support (Tower) :

The following tasks are performed in the tower model:

* Simulate the dynamics of the tower/nacelle by using the modal

analysis, the modal information being typically generated by a finite

element program such as NASTRAN.

* Compute the velocity and acceleration of the hub for use by the rotor

model.

It is not practical to hypothesize a fully general model for a

subsystem such as the support system, because of the many possible designs.

Accordingly, the approach taken herein is to implement a general linear

model. Other nonlinear phenomena, such as hysteresis in gear trains, can be

included in the model as and when required. The support system equations

which can incorporate many configurations of tower/nacelle dynamics are,

s'" + D s. s" + _s" s = gs'

where

gs = Gsf" fh + Gsm" mh

The hub velocity and acceleration are given by,

v h = Sv. s" + Vbh ; w h = Sw. s" + Wbh

v_ = Sv. s'" + Vb_ ; w = Sw. s'" + Wbh

A modal model has been used (see discussion of modal analysis in Appendix

B). The vector, s, contains the normal coordinates. The vector, gs contains

the generalized forcing functions, each divided _ its respective
generalized mass. The diagonal operators, D_., and W . are damping and

frequency matrices, respectively, associated _ith the n_rmal mode analysis.

m .The forces and moments acting on the tower are, respectively, fh and h

The operators, Sv. and Sw. are the modal matrices, so that they produce t_e
shaft motion when they operate on the normal coordinate velocity, s .

Arrays Gs_. and Gs_. operate on the shaft loads produced by the rotor
to generate the gene_'_lized forcing function. These operators can be

derived by transposing the modal matrix operators followed by dividing each

resulting row with the generalized mass of the associated mode.

2-5



Columnsvl h and whh are incorporated in the support system model, which
are supplied 9o the m-_delfrom an external source. These columns represent
"base" motions of a moving system to which the elastic support system is
attached (e.g., if a wind turbine is mounted on a barge). The external
source can be the System IO Data Interface (SIDI) incorporated in the
WEST-3hardware, or it can be an additional set of models coded and loaded
in WEST-3to represent such a base flexibility. These additional columns
have been incorporated in the model at this juncture to provide more
generality.

A specialized version of the general matrix support models as presently
implemented consists of a tower with three modal degrees of freedom, in the
following directions: surge (motion along the #3 rotor axis), sway (lateral
motion along the #2 rotor axis), and yaw (rotation about the #i rotor axis,
or tower torsion).

2.3 Control System:

The function of the control system is to change the blade pitch angle

so that a desired rotor speed and/or power output is maintained. As is the

case of the support system, control systems can take on many

configurations. A general linear state controller model is implemented in

WEST-3. This model can embrace many control system configurations, but will

require additional code if nonlinear phenomena are to be included. The

generic equations are,

Srqa" + A a. a = ap Mp + a z Z + azd Z" + ag Za + apr Prq + asr + ao

c = Ca . a + Cp Mp + cz Z + Czd Z" + Cg Za + Cpr Prq + Csr Srq + Co

= LT a + L M + L Z + Z" + L Z + Lpr P + S + LLgc a ° p p z Lzd g a rq Lsr rq o

The column, a, is the state vector for the system, and can be any size.

Control system degrees of freedom associated with filters, compensation

networks, integrators, etc., can be converted into the state form shown.

The control system receives inputs, processes them with the state

algorithms, and produces outputs. Inputs are: command requested power

(P ), command rotor speed (S), rotor speed (Z), rotor acceleration (Z'),
r °

power traln moment (M), _d alternator speed (Z), and the shaft

velocities and time derivatives of velocities. The zer_o subscript denotes

initial conditions or some constant offsets, if any. The control system

produces the control column, c, for the rotor, and a torque on the

alternator rotor, Lg c.

Figure 2.4 shows an example of a control system which is typical for a

wind turbine; blade and alternator controls are included.

2-6
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Referring to Figure 2.4, the equations for this system can be written

as follows; the basic equations are shown first, followed by an equivalent

version which conforms to the general state controller model.

Basic Equations:

Controller: Alternator

Ze = (Srq - Z)

A{ = KI Ze

As = (I/Tc) (A1 - A 2 + Kc Ze)

Rearranged Equations:

A_ = Kpp (Za - Zn)

Lg c = KpI (Kpf Prq - Kpz Za - A3)

Ze = (Srq - Z)

A{ = Azl Ze

A s = Aa21 A 1 - Aa22A 2 + Az2Ze

A_ = Ag 3 Za + A0_

Lgc = Lal3 A3 + Lpr Prq + Lg Za

C 1 = Cal 2 A 2 ....... Blade Pitch Angle

Once the derivatives, a', are computed, the control column, a, is

obtained by numerical integration. The Euler integration method has been

used in WEST-3; the time derivative is simply multiplied by the time step

to get the change in a over a time interval. This method is suitable in

most cases because the periods associated with most wind turbine control

systems are long compared with the numerical integration step size. If the

control loops incorporate high gains, and therefore produce high frequency

control modes with short periods, then a more sophisticated numerical

integration algorithm might be indicated.

2.4 Power Train

The following tasks are performed in the power train model:

* Compute the rotational acceleration and velocity of the rotor, taking

into account the dynamics of the power train components.

* Determine power generated and the reaction loads applied to the

support.

* Advance the azimuthal position of the rotor.

2-8



The general linear power train model in WEST-3 can be written as,

% p +8p p ÷Kp.p Pm ÷ ÷PzdZ

P => {PI' P2 )' power train variables; Z = Pl " Z" = p_"

A standard differential equation is incorporated, with inertia, damping

and stiffness arrays, J., B . and K_.. Variable inputs to the model

include the rotor torque_M_, _eneratorPcontrol torque, L_ (i.e., torque

applied to the generator rdtor by the electrical system _ich is part of

the control system in these WEST-3 models) and rotor spin acceleration, Z'.

Appendix E presents a derivation excerpted from Reference 4 which

provides for a single power train degree of freedom. This simple analysis

reveals the "algebraic loop" problem that rises naturally from the

derivation of a power train model: this loop will drive almost any computer

implementation of a power train model unstable. The reformulation used in

Appendix E to solve this problem requires subtracting the influence of Z"

from the rotor shaft torque, and including this inertial effect instead in

the power train equations. This approach, which is essential for successful

power train simulation, requires the parameter, Z', as an input. The

generation of this parameter should be the same (in time) as that sent to

the rotor to produce the rotor torque being used to solve the power train

equations over a time step.

However, in some cases, even the reformulation outlined above may not

prevent numerical instabilities when the power train model is coupled with

the rotor model. In fact, the problem occured during the WEST-3 validation

studies when the MOD-0 wind turbine was being simulated. Full details of

the nature of the instability, and the special procedure devised to correct

it can be found in Reference 7.

Figure 2.5 shows an example power train with two degrees of freedom.

w2 w I /_

_L K1

Aiterna=or Power Train Rotor

Figure 2.5 Example of a Power Train Model
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Referring to Figure 2.5, the governing equations are,

J1w{ : -KI(Wl-W2)-B1(w{-w?-cIw{÷%

J2w_ - ÷K1(Wl-W2)÷B1(w{-w_)-c2w_-_gc

These basic equations have to be "reformulated" (see Section 3.1 for a

diccussion of reformulation) to maintain computational accuracy.

Accordingly, the generic positional coordinates are replaced by

"differential" coordinates (which are the differences between positions of

neighboring inertias in the model). The reformulated equations are,

P{ : -Kpl2P2-BpllP{ -8p12P_÷Pml% ÷PzdlZ

P2"= -Kp22P2+Bp21P{ -Bp22P2+Pm2Mh+Pzd2Z"+PL2Lgc

where,

Pl = Wl

P2 = Wl - w2

z = p{

Z" =Pl"

Za_ (Pi - P? ... Alternator Speed

The constants in the equations are defined as,

JT = Jl + JR

Kpl2 = K1 / JT

Kp22 = (KI/J T) + (KI/J 2)

Bpll = C1 / JT

Bpl2 = B1 / JT

Bp21 = (C2/J 2)

B
p22

- (CI/J T)

= (BI/J T) + (BI/J 2) + C2/J 2

Pml = 1 / JT

Pm2 = 1 / JT

Pzdl = JR / JT

Pzd2 = JR / JT

PL2 = 1 / J2

The reader is directed to Reference 5 for more detailed derivations of

power train models. The Reference shows that even very general power

distribution system models convert to expressions of the form presented in

this Section.
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The azimuthal position of the rotor is advanced by using a "rate
resolver" algorithm. Actually, the sine and cosine of the azimuthal angle
are generated as follows:

sin(Y+DY) = sin(Y) cos(DY) + cos(Y)sin(DY)

cos(Y+DY)= cos(Y) cos(DY) - sin(Y) sin(DY)

where Y is the current azimuthal angle, and DY is the advance angle which

is a function of the numerical integration step size and the rotor speed.

However, the algorithm is unstable in the sense that amplitude errors cause

the sum of the squares of sine and cosine to be other than unity. To

correct this problem, the cosine of the advance angle is varied small

amounts from its nominal value (near 1.0) to correct for amplitude errors.

The procedure is as follows:

Given: Z (rotor speed), DT (numerical integration step size),

current values of cos(DY), Sin(Y), and cos(Y).

i. Compute sin(DY): sin(DY) = Z DT

ii. Compute the amplitude error: e = sin2(y) + cos2(y) - 1
a

iii. Make correction to cos(DY):
c°s(DY) Inew= cos(DY) - Ga ea

iv. Compute the sine and cosine of the new azimuthal position, by using the

new, corrected value of cos(DY).

Here the gain factor G has be chosen so that the algorithm is stable. For
• a

wind turbine slmulatlon work the choice of Ga = 0.25 yielded good results.

2.5 Air Mass

The following tasks are performed in the Air Mass model:

* Define the linear and rotational velocities of air flow around the

rotor.

* Compute the air flow retardation velocity as a function of the rotor

thrust by using the standard Glauert momentum model (Reference 6).

* Simulate the effects of wind gusts by generating random number

functions which appear as white noise in the system. The desired gust

spectra are obtained by using quadratic filters.

* Determine the influence of wind shear and tower shadow on the air

flow as seen by the blades.
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The equation for the retardation velocity can be written as,

V 2 2 1/2
Vrw = Kar RHOr Fh3 / ( ah2 + Vah3)

where V is the retardation velocity, F=_ is the rotor thrust, RHO is the

air density ratio, Ka_ is a constant*,_ and Vah_, Yah 3 are t_re local
aerodynamic velocity components. Note that an impIlcit-f_op exists in the

model, since the local aerodynamic velocity is itself a function of the

retardation velocity. The problem is solved by a servo loop shown in Figure

2.6.

VRW

VWI÷VGi

t

 [GCE /OT +

[_ W.H2

Figure 2.6 Servo Loop for the Air Flow Retardation Velocity

The servo loop solves for the reciprocal of the local aerodynamic velocity,

Rv = 1./(Vah22 + Yah32) 1/2

The calculation first computes an error function,

evr = i. - Rv 2 (Yah2 2 + Yah3 2)

which is zero if Rv is correct. This error is multiplied by a gain factor,

G_ev, (which is input data to WEST-3) to produce a change in Rv which is in
t_e direction to correct the error.

The size of the loop gain, G__. will determine the speed at which the
_V

servo will converge on the correc_ solutzon. Excessive gains will lead to

instability, however. Because the servo is nonlinear, the stability margin

for the system varies over the operational envelope.
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The local aerodynamic velocity can now be written as,

Vwt = vw + iI Vrw + Vg

Wwt = ww + Wg

Vah = vh + R2 (Yr2). Vwt

Wah = wh + R2 (Xr2)" Wwt

The retardation velocity computed by the servo discussed above is

subtracted from the ambient wind. The steady windspeed is specified by the

two input columns, vw and ww. To these are added gust columns, Vg and Wg.

Windgusts are simulated by generating random number functions which

appear as white noise in the system, and then by passing these through

quadratic filters to produce gust spectra with controllable bandwidth,

magnitude and center frequency. Six independent filters are incorporated,

so that the wind can gust in six degrees of freedom near the rotor. The

equations are,

qg" + Bg. qg + Kg. qg = rg

Vg = Vg u. qg

Wg = Wg u . qg

The windshear modulates the windspeed locally at a blade element

depending on the distance the element lies above the ground. A table

look-up scheme permits the use of an arbitrary nonlinear profile for the

wind. The tower shadow effect (windspeed changes due to proximity of a

blade to the tower) is usually specified as a percentage by which the wind

speed is reduced, when the blade is within the shadow region, either

rectangle or a sector. In general, windshear and tower shadow effects on

the local blade aerodynamic velocity are implemented by calling two

subroutines as follows:

Shr = SHEAR ( cos (Yi), sin (Yi), Sj )

Shd = SHADOW ( cos (Yi), sin (Yi), Sj )

= * *

Vaa Shr Shd Yah

where Y. is the azimuthal angle of the i-th blade, S_ is the position j-th

radlal statlon, Sh_ Is the correction factor due to w_ind shear, and S. _ is
the correction fah_or due to tower shadow. The augumentive velocity,ng ,

aa
is added to the local aerodynamic velocity to account for the wind shear

and tower shadow effects. In some cases, such as when the wind shear

profile is linear, the corrections to the local aerodynamic velocity can be

obtained by simple algebraic equations, instead of calling subroutines.
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3. SIMULATIONMODEL:REFORMULATION,NORMALIZATION,ANDSCALING

The simulation of a wind turbine system begins with the mathematical
modelling of the various physical phenomenawhich are occuring in the
system. The mathematical models are then "processed", taking cognizance of
any special numerical problems, and the characteristics of the simulator on
which the models are to be solved. For example, all the computations in
WEST-3 are done in 16-bit fixed point arithmetic with the attendent
limitations in accuracy of the computations. Special software could be
written to perform 16- or 32-bit software floating point operations.
However, such software would drastically reduce the speed of simulation.
Therefore, 16-bit fixed point computations have been retained in the
WEST-3, and the simulation model has to take cognizance of this fact.

The objective of processing the mathematical models is to come up with

a simulation model which permits

I. Accurate simulations in real time

2. Adapation to wind turbines of varying physical sizes.

Presented in this section are details of processing needed for wind turbine

simulation on WEST-3. There are essentially three steps; Reformulation,

Normalization, and Scaling.

3.1 Reformulation

Many subtle numerical problems arise in a wind turbine simulation; in

particular, in the solution of the aeroelastic rotor equations. There are

effects in the model that produce very large numbers. In the final results,

differences of these large numbers yield small numbers which reflect some

very important dynamical characteristics. The computation of the small

differences of large numbers can lead to inaccurate results even in

computers having large word sizes. On _'_ST-3, with its 16-bit fixed point

arithmetic, this problem can completely destroy the accuracy of the

simulation.

The answer to the problem is to reformulate the equations in such a way

that small, important effects are not masked during the computations. The

idea is to generate equations where subtractions of large numbers have

already taken place so that, in the simulation, one solves directly for the

important small-difference terms. The specific ways of reformulation must

be selected with a thorough knowledge of the physics of the problem. The

models and their special idiosyncracies must be well understood so that the

critical areas that produce numerical problems can be identified and

reformulated. Full details of the reformulation of the aeroelastic model

used in WEST-3 can be found in Appendix B.

I3.2 Normalization

The reformulated model goes through a process of normalization. This is

a process of redefining all the variables in the model by using

characteristic or reference values of dynamical quantities, such as,

ve!ocity_ acceleration, force and moment. The normalized parameter will
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usually exhibit the same range of excursion, whether the machine being
simulated is large or small. Thoughnot a requirement, the process yields,
in most cases, nondimensionalized equations. The objective of normalization
is keep each number in the simulation within a reasonable range. The same
normalized simulation model, with perhaps minor modifications, can be used
for wind turbines of widely varying physical sizes.

Each entity (variable/constant) in the simulation has a normalization
factor defined as follows:

Es Ep * F= * Fs n

where E is the "system entity" or the simulation entity, and E is the
"physica_ entity" or the actual physical entity. In the curren_ WEST-3
implementation, units on physical entities are feet, pounds, seconds, and
radians, unless otherwise specified. Degrees, inches or metric units are
not incorporated with physical entities. The "scale factor", Fs is
described in the next subsection, 3.3.

F is the "normalization factor". For example, if E is the rotor
thrus_, then F will be the reciprocal of some force (e._., the average
thrust or the _ean value of the design thrust that can be developed), so
that E * F is nondimensional.

p n
In the definitions of variables and constants in this section, the

normalization factors are expressed as ratios. The absence of a slash in
these definitions is interpreted as a default numerator.

The normalization factor definitions thus appear in the forms

F(numerator )/F (denominator )

where the numerator and denominator factors can be FORTRANexpressions. In
these normalization factors, the numerators and denominators are viewed
separately. Only one slash is allowed within each definition. Examplesof
normalization factors are:

TH/RF NB*PXA*C/RHO*R*R*W I./RHO*V*V

Note that these factors are not decoded as a standard FORTRANexpression.
For example, standard FORT_Nd---ecodingbegins at the left of an expression
and performs the operations as it moves to the right. FORTRANwould decode
the secondnormalization factor, above, as follows:

(NB*PXA*C/RHO)*R*R*W

In the conventions defined for normalization factors herein, the factors
are considered pure ratios. Proper decoding for this convention in the
example abovewould therefore be:

(NB*PXA*C)/ (RHO*R*R*W)
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3.3 Scaling

After normalization, the simulation model is "scaled", a process which

ensures that each variable and constant in the model takes on values within

the range of +I and -!. Scaling is needed because all the computations in

WEST-3 are done in 16-bit fixed point arithmetic, a feature which is a

major contributor toward achieving a real-time simulation capability. The

limited significant figure accuracy attendent in such arithmetic demands

that special scaling techniques be used to process the equations (and the

constant data) before they are solved on WEST-3. The scaling process is

similar to the one used in analog computers. However, unlike analog

computers, the all digital WEST-3 is rather unforgiving of scaling errors

which cause over/underflows.

In conjunction with the normalization factor, the scale factor relates

a physical entity to the corresponding system entity, i. e.,

E =E *F *F
s p s n

The scale factors, F , are numbers. They are selected so that the

system entity does not exceed the range -I < E < +i In the simulation,
s

the system entities are 16-bit numbers that can be viewed as having a

decimal point to the far left of the number. In the Computational Units

(CUs) of WEST-3, the numbers are represented in WEST-3 in 2's complement

form. Hence, these numbers can only range between +/-.9999 (decimal). The

CUs incorporate a hardware multiplier that performs 2's complement

multiplies assuming the decimal point placed as defined above. Hence, two

numbers with maximum values multiply to a number also at the maximum value

incorporated in the system.

3.4 Database Representations of Variables and Constants

Complete definitions of all the variables and constants in the

simulation model are given in Appendix F. Each definition consists of two

lines. The first line shows:

Label(s): Scale Factors : Normalization Factors

and the second line of each definition is an arbitrary field of 80

characters expressing the definition of the entity in English.

The labels are the symbolic names of the entities that appear in both

the physical and scaled equations. The label field is terminated by a

colon. Scale factors follow as a string of numbers separated by commas.

Normalization factors follow a colon. The normalization factors are

separated by commas. In these definitions, blanks have no significance, and

can be placed anywhere to aid in the clarity of the definitions.

The syntax associated with variable and constant definitions uses an

"autospawn" capability: a shorthand procedure whereby many definitions can

appear on any line. The autospawn facility operates on an entity enclosed

by commas, a colon and comma, or a comma and the end of the entire line.

The autospawn syntax, in general, has the form:
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where the "C"s are characters of essentially any definition except

parentheses or the + or - sign. The autospawn syntax defines n+l items. The

first appears if the parentheses and the "+n" are dropped. The next is with

i+l substituted for i, and the parentheses and "+n" dropped. The last

defined entity is with the numeral "n" substituted for the "i".

For example, the syntax:

VA(3)+4

defines a string of labels:

VA3,VA4,VA5,VA6,VA7

In some cases, the autospawn facility is used without parentheses to

repeat an identical definition. For example, the syntax:

.3333+3

Produces the equivalent of a string of four numbers ".3333". With this

definition, consider the following example of a variable definition using

autospawn:

VW(1)+5: 2.5+5: I./VR+2, 1./OR+2

WIND INERTIAL VELOCITY RESOLVED TO OVERALL SYSTEM COORDINATES.

This definition defines six scalar entities, VWI, VW2 .... VW6. All have

scale factors of 2.5. The first three in the string have normalization

factors I./VR (where "VR" in this case is a velocity reference = rotor tip

speed in the case of the rotor), and the final three entities in the string

are normalized to the reciprocal of "OR" (Omega reference- a rotational

velocity reference which in the case of the rotor is the nominal rated

rotor spin rate).

The autospawn facility is very powerful, especially for systems which

tend to be organized in vector strings. The size of the data base required

to define a complex set of system equations is considerably reduced using

this autospawn definition. The autospawn can produce decreasing numbers in

a definition if a minus (-) sign is included in the parentheses. For

example, a definition of the form

VAB(-6) +5

might be convenient, where the autospawn would produce the equivalent

definition:

VAB6, VAB5, VAB4, .... VABI.

Note that the final number in the string can be calculated by subtracting

the number following the "+" sign from the number in parentheses. The

similar situation emerges for ascending autospawn definitions, where the

last number in a string is the sum of the one in the parentheses and the

one after the "+" sign.
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3.5 Physical Equations and System Equations

The math models for the simulation are presented in this report section

in two forms: "physical equations" and "scaled equations". The physical

equations are direct representations of the reformulated mathematical

models, expanded to scalar form. These equations incorporate physical

variables and constants. The scaled equations are those actually solved by

the computer.

Appendix G presents the physical equations for the wind turbine

simulation model consisting of the Rotor, Air Mass, Tower, Power train, and

control system. The corresponding system equations can be found in Appendix
H.

The parameters in the scaled equations are the system parameters. The

equations appear very much like the physical equations, except that many

terms in them have additional factors. These factors are always real

numbers. The scale factors are chosen so that these numbers are usually

bounded between +/-I, just like system parameters. The numbers can be out

of this range if they are integral powers of 2, however.

The factors in the scaled equations have been placed there so that the

scaled equations are equivalent to the physical equations. To see how this

is required, suppose the following normalization and scale factors have

been defined for certain variables and constants:

Symbol Scale Factor Normalization Factor

X 5. S_q*R

Y 2. T/P*Q

Z 20. R/W

A 6.

B 25.

R*R/S

P*P*Q*Q*R/T*T*W

Let the physical equation appear as follows:

Z =A* X+ B* Y* Y

In this example, the scaled equation (i.e., the system equation) will be

Z = .6667 * A * X + .2 * B * Y * Y

One can confirm the equivalence of the system equation to the physical one

by substituting physical parameters (with the normalization and scale

factors included) in lieu of the corresponding system parameters in the

system equation. The items in the normalization factors should all cancel

and all real constants should merge into unity factors, such that the

system equation so processed becomes identical to the physical equation.

As stated before, the factors that appear in the system equations

(placed there for equivalence to the physical equations) are usually

bounded between +/-I. Indeed, the scale factors on the variables and

constants are chosen so that this is the case. When this is true, the
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hardware multiplier is used to simply multiply the number by the other
factor making up a full term in an equation. If this number appears as a
product with another real number in a term, the numbers can be combined
into a single number. For example, if a term in a physical equation
contained a number "2.", and a factor (arising from the scaling
considerations) of ".3333 'r is also needed on the term, the final numeric
factor would be ".6666", assuming of course that this final factor obeys
the rules.

The rules for factors are: bounded by +/-i or integral powers of 2. In
the first case, the factor is processed in a normal way. If the factor is
represented as a power of 2, it must be considered a shift operation in the
code, not a multiply. For example, a factor of 16. would require a number
to be shifted four times to the left. An arithmetic shift would be made, so
that the bits that appear in the four rightmost positions in the word
(after shifting) are zero.

Division by integral powers of 2 can also be accomplished by shifting
right. Hence, it is correct to show divisions in equations, but this is
seldom of value since the division by 2 can be easily represented as a
factor of ".5".

It should be noted that one shift takes the same time in a CU as a
multiply. Factors larger than 2 will require more that one instruction,
however, so they are slower than multiplies and should therefore be avoided
unless absolutely necessary.

Scale factors and normalization factors are chosen based on a sound
understanding of the physics associated with the system being simulated.
After these factors are initially chosen, they are often changedmany times
as a simulation is brought to operational status. The changes occur because
of manyobservations, including:

* A constant, after scaling and normalization, exceeds the range
+/-i.

* During simulation runs, a system variable is found to exceed

its range of +/- 1 for legitimate operating conditions of

interest.

* A numerical factor in a system equation is not within the rules

(within +/-i) or an integer power of 2.

* Inaccurate simulation results occur because important terms in

the equations are masked in the final calculations due to poor

scaling (leading to excessive loss of significant figure

accuracy).
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4. DYNAMIC SCALING

Most of the scaling associated with the simulation equations

incorporates "fixed" or constant scale factors; these have already been

discussed in Section 3. In key areas, however, variable scale factors are

needed because of the propensity of certain expressions to have severe

ranges of operation that preclude accurate simulation with only 16 bits and

a constant scaling.

In these cases, variable scale factors are used. These are in every way

equivalent to floating point exponents. These are only used where they are

definitely needed because they involve more operations (and therefore take

more time) than simple fixed-point operations.

When variable scale factors are used, they are interpreted as positive

binary exponents. An entity will thus be represented as

F * 2**SF

where F is the fraction and SF is the variable scale factor. The fixed

scaling for the entity can be chosen so that SF is always a positive

integer number. Hence, SF is implemented in the programming by loading F

into the accumulator, multiplying it by the factor associated in the

expression and then shifting the result SF times to the left in the

accumulator. The undefined least significant bits (SF of them) in the word

are set to zero in this process.

In most cases where variable scale factors are used, two computer words

are used, one for F and the other for SF. In some cases, however (e.g.,

large tables), both F and SF can be packed into one word. For example, of

SF is given 3 bits, then one 16-bit word can carry the sign bit, a 12-bit

fraction (which is an accuracy of +/-.025%) and an exponent that can expand

the range of the parameter to +/-256 from the usual range of +/-i.

The 16-bit floating point format described above is very accurate in

representations of, for example, aerodynamic tables where the physical data

in the tables is usually not known to within 5 per cent.

4.1 Aerodynamic Geometry

This subsystem involves a special problem: the calculation of quotients

that can have a small denominator. The subsystem resides in the rotor blade

element computations, the group of computations in the simulation that are

most speed critical. For these reasons, special considerations have been

made regarding these computations.

The computations essentially require division, a process that is not

incorporated in the hardware of the Computational Units (CUs) of WEST-3.

Software divisions can be done, of course, but these are slow and therefore

very undesirable in this most critical area of the simulation.
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Other considerations on the aero geometry calculations are-

* the results go to the aero tables- tables of physical data that are
never_knownto high degrees of accuracy. Becauseof this, the results
of the aero geometry need not be any more accurate than the tables
are known. The aero geometry calculation must be madewith speed and
accuracy carefully balanced so that excessive (unneeded) accuracy
does not penalize speed.

* The calculations are madein an integration loop, so that the values
of parameters entering and leaving the calculations change only a
small amount for every pass through the calculations. This fact
allows the use of algorithms that take advantage of the perturbation
nature of the process, using past values as starting points for new
calculations.

Figure 4.1 shows the aerodynamic geometry at blade radial station.

VASQ= VA2*2 + VA3**2

VA = SQRT(VASQ)

SAB = VA3/ VA

CAB = VA2 / VA

M = RVC * VA

Figure 4.1 Aerodynamic Geometry at the Blade Station

Here VA is the air speed, VA2 and VA3 are its components, SAB and CAB are,

respectively, the sine and cosine of the angle of attack AB, M is the Mach

number, and RVC is the reciprocal of the local speed of sound. The Mach

number calculation is straightforward and requires no additional discussion

here. The others involve the square root and division operations, however,

both problematic in the simulation.

The calculation of airspeed is easily performed if the changes in SAB

and CAB are known. If the expression for the square of the airspeed is

differentiated and then divided through by 2*VA, the change in airspeed is

given as:

d(VA) = CAB * d(VA2) + SAB * d(VA3)

Hence, if the airspeed was known for the last pass through the equations,

the old values of SAB and CAB can be used with known differentials on the

input velocity components VA2 and VA3 to get the perturbation in airspeed.

A new estimate of airspeed can then be made, and used in the calculations

of new SAB and CAB parameters.

The real problem is the division by airspeed. An algorithm will now be

derived that converges to the reciprocal for small changes in the input

parameter.
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Let V be the knownparameter, where it is necessary to computex = i/V.
If x is the last known value of the reciprocal, an error function, e, can
be d_fined using the new (given) V:

e = ( V * x - i. )

If x is correct, e vanishes. The calculated error for x is
o

e = (V* x - i. )o o

The derivative of e with respect to x is V. Since e needs to vanish, the
equation for dx is derived:

e + de = 0 = e + V * dxo o

Solving for dx and noting that dx = x - xorresult:
where x is the new desired

- e°x = xO /V

Approximatingis i/V with the last value of x, Xo, the correction expression

* (l.-e)
x = Xo o

This is the final expression, since it is desirable to compute e
o

intermediate calculation to see how close the convergence is. The e

eliminated, however, producing another version of the algorithm: o

as an

can be

x = x * (2. - V * x )
o o

If V changes by small intervals, this expression converges rapidly to the

desired result using minimal calculations. Additionally, the error can be

tested and the number of iterations expanded, in cases where the error is

too large due to rapidly changing V.

This algorithm can be used to compute the reciprocal of air speed,

RECVA, which can be carried in the aero geometry section to facilitate

straightforward calculation of SAB and CAB. The problem with this is that

the reciprocal can span a very large range because airspeed can get very
small.

Variable scaling can be used to solve this problem where RZCVA is

carried as a fraction and integer scale factor (floating point number). The

logic in the calculations detects overflow when RECVA is computed, which

calls for incrementing the scale factor and shifting the fraction right by

one (to eliminate the overflow). The scale factor can be decremented and

the fraction shifted left if the most significant bit of the fraction is

detected as a zero.

The floating point operations described above are simplified by the

fact that RECVA is always a positive number.
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4.2 Aerodynamic Coefficient Tables

The aerodynamic tables (for the wind turbine application where Mach

number is irrelevant) use SAB and CAB to produce lift and drag coefficients

CFA3 and CFA2. The tables must apply to a 360-degree range of angle of

attack, AB, but they are both univariate tables in that only one of the two

input parameters are used to look up within the tables at a time.

The tables are separated into four quadrants defined by the points

where the sine and cosine of ABI are +/-.707. The quadrants and the

associated independent variables ("lookup parameters") are described in the

table, below:

Quadrant Definition Lookup Parameter

1 CAB > .7071 SAB

2 SAB > .7071 CAB

3 CAB < -.7071 SAB

4 SAB < -.7071 CAB

Each of the quadrants has two tables, one for CFA3 and one for CFA2.

These tables have a number of elements that must be an integral power of 2,

but the numbers of elements in the tables associated with each quadrant can

be different. For example, quadrant 1 may have 1024 entries for CFA3 and an

equal number of CFA2 points. Quadrant 2 may have only 128 elements in each

table, however.

Parameters are fetched from each table simply by using the lookup

parameter as an address. The lookup parameter is masked to the correct

number of bits by multiplying it by a mask word. The result is added to an

offset, and the indirect address so created is used to fetch the desired

CFA3 and CFA2 numbers. By providing adequate granulation in the tables,

interpolation can be avided.

Because of the ranges that the aero coefficients can reach

(particularly CFA2), the tables are be 16 bit floating point numbers (three

bit binary exponent). The fixed scaling will enable the use of only

positive integer exponents.

The floating point numbers fetched from the tables are decomposed into

separate fraction and exponent words for use in computing the Aero Loads at

a blade radial station; products of these numbers with the dynamic pressure

and the blade chord will be shifted by the number of places of the exponent

to produce the final distributed blade aerodynamic loads, lift and drag.
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5. CONSTANT DATA PREPROCESSOR

In addition to the gereration of the simulation model, described in the

previous sections, the other major task associated with a wind turbine

simulation is the preparation of the constant data. The data consists of

physical data and specifications of the specific wind turbine to be

simulated; the rotor dimensions, the wind speed, commanded rotor speed, the

frequencies and mode shapes if the blade modes etc.. Additionally, there

are a large number of constants which have be computed for use by the

simulation model; for example, products involving the blade mass

distribution and the elastic mode shapes integrated over the blade span.

All this raw data has to be normalized and scaled before it can be used

in the simulation. In Figure i.i of Section i, this prosess of generating

the scaled constants is indicated as being carried out by a "PREPROCESSOR".

In actuality, the preprocessor consists of more than one specially designed

computer program, running on a computer external to WEST-3. At present,

Digital Equipment Corp. (DEC) PDPII computers are being used for this

purpose at Paragon Pacific Inc.. This section presents a outline of the

mechanics of generating the scaled constants.

Figure 5.1 shows a schematic of the computer programs and the various

data files used in processing the constant data. The decision to have a

number of programs, instead of a single large program, was made mainly for

debugging purposes. It is envisaged that, for future work, a more compact

version of preprocessor will be developed. Referring to Figure 5.1, there

are two distinct components, generation of the physical constants, and the

generation of an executable load module which can convert the physical

constants into scaled constants. Following are brief descriptions of the

components.

DSS2:

This program is used to process all the data associated with the wind

turbine rotor. The input to the program is a file, DSS2.INP, which contains

data pertinent to the rotor and the operating conditions. The major task of

this program is to relieve the user from having to generate the the large

number of constants needed for the simulation. The output file, DSS2.0UT,

contains an echo of all the input data, and a listing of the generated

constants. The other two output files, DSS2.SNG and DSS2.TBL, also contain

the same information, for use by the WEST load module.

WEST.CON

This file contains all the constants pertaining to the subsystems,

other than the rotor, i.e., Air Mass, Tower, Power Train, and Control

System. %_ST.CON is directly input into the load module, WEST.

CONVRT:

The task of this program is to convert the data base representation

(see Section 3.4 and Appendix F) of the variables and constants used in the

simulation into standard FORTRAN programs. By using the system software of

the DEC PDPII computer, these FORTRAN programs can then be compiled and

linked to yield an executable load module, WEST.
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Figure 5.1. Generation of Scaled Constants: PREPROCESSOR
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As an example, a typical data base representatation of a variable is,

KGE : 20.0 : MR/ RAR

CONSTANT IN THE GIMBALL SERVO INTEGRATION FORMULA

where MR is the reference moment, and RAR is the reference linear

acceleration; both are defined in the output file DSS2.SNG. Here, the scale

factor is 20.0, and the normalization factor is (MR/RAR). The CONVRT

program will convert the data base representation into a FORTRAN arithmetic
expression,

KGE = 20.0 * MR / RAR

The input files XXX.VAR and XXX.CON contain, respectively, the

definitions of the variables and constants in the simulation (see Appendix

F). The output files XXX.XOR and XXX.HDR together constitute the FORTRAN

program containing arithmetic expressions, such as the one shown above for

the constant KGE. Also, there is a third output file, WEST.VNM, which
contains a list of the variables and constants.

COMPILE and LINK:

These steps of compiling and linking, to get the executable load

module, WEST, are straight forward uses of the DEC computer's system
software.

WEST

This is the executable load module, which does the actual conversion of

the physical constants in the files, DSS2.SNG, DSS2.TBL, and WEST.CON into

a form which can be downloaded into WEST-3. The output file WEST.VTX is a

listing of all the scaled constants, for the user's reference. The same

information is contained in XXX.VSV, in a binary format, for efficient

processing by the WEST-3 system software.

SIMCON.OBJ

This is library of several special purposes subroutines which have

been coded for use by the programs, DSS2, CONVRT, and WEST.
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6. WEST-3SYSTEMSOFTWARE

After the simulation model and the scaled constants have been prepared,
the next step in the simulation process consists of using the WEST-3system
software to generate the executable code which can downloaded into WEST-3.
From the inception of the design of WEST-3, it was recognized that having
adequate system software was the key to making the system friendly to the
user, and hence increase the usefulness of the system. The system software
that has been developed for WEST-3is fairly standard, in the sense that,
the process of generating the executable code is similar to that in any
other computer. A schematic of the WEST-3system software can be found on
page 1-2 of this report in Figure I.i of Section i. Presented in this
Section are brief descriptions of the various componentsshown in Figure
i.i.

The scaled simulation model consists of a set equations which are coded
in a subset of ANSI FORTRAN,the computer language used widely in
engineering applications. At present, the subset consists of the following:

i. arithmetic expressions
2. logical IF statements
3. GOTOstatements
4. CONTINUEstatements,
5. COMMONblock definitions
6. FUNCTIONsubprograms
7. SUBROUTINEs.

This subset of FOR_N has been found to be adequate for application to
wind turbine simulations. Due to the modular design of the system software,
future enhancements to the Translator can be readily incorporated. It
should be emphasizedthat the user is not required to code the simulation
model in the machine's native assembly language; programming in the
assembly language is a nontrivial process.

The Translator converts the scaled model into WEST-3assembly language
mneumonics. The Assembler converts the output of the Translator into an
Object Codesuitable for processing by the Linker. The role of the Linker
is traditional, in that it generates an executable Load Module by combining
several Object Code modules; typically, a main program and several
subroutines. The Translator, the Assembler, and the Linker constitute the
bulk of the system software for WEST-3. For debugging purposes, several
files, such as memorymaps, are also generated while processing through the
software.

The Loader performs task of loading the memories of a Computational
Unit: the instructions (Load Module) into the Insruction _mory (IRAM), and
the scaled constants into the Processing Memory(PRAM).The Loader has been
designed to be as user friendly as practicable. For example, the choice of
which Computational Unit is to be loaded, the list of input/output
variables, configuration of the serial ports are all definable by the user
at the time of loading.

Several utility programs are also available for debugging. Amongother
things they provide for the display of internal buses in a Computational
Unit, single stepping through the program, and peek/poke capabilities.
These utilites are invaluable for detailed debugging, whenneeded.
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7. CONCLUDINGREMARKS

As part of the WEST-3development process, validation of WEST-3was
successfully completed by conducting simulations of the MOD-0wind turbine.
The validation exercise served to prove the WEST-3system, both hardware
and software. The exercise was also invaluable in providing direction for
enhancing the utility and user friendliness of WEST-3.As a result of the
experience gained during the development of WEST-3, the following efforts
are either underway, or planned for the near future:

1. The method of coupling the rotor model to the power train and the
tower models needs to be reexamined; reformulation of the presently
used procedure may be indicated.

2. A more compact version of the existing preprocessor programs used
for preparing the constant data needs to be developed.

3. Extensive scaling of the simulation model, mandated by the fixed
point nature of WEST-3, is a tedious and time consuming task. To
eliminate the need for scaling, a 32-bit floating point system has
been designed. Breadboard verification of a single Computational

Unit is under progress, and a full system is expected to ready for

use early in CY 1986.

. To significantly improve the user friendliness of the system,

development of a new suite of system software is underway for the

floating point system. The user will be able to write programs in

the ANSI FORTRAN-77 language; presently, only a subset of the

language is permitted. Further, the user will have access to many

more debugging tools than are available at present.
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This appendix is provided to clarify terms and define fundamental
methodology incorporated in the analyses presented throughout this
document. It is not intended to be comprehensive treatise on the methods of
vector and matrix analysis. Portions of the appendix are tuitorial in
nature to serve the purposes of definition and clarification, but a basic
knowledge in the areas of vector and matrix algebra and calculus on the
part of the reader is assumed.

A comprehensive analysis often involves many systems and system
componentswhich require the general methods of mechanics. Motion entities
must be carefully defined and processed, and many transformations are
required. Hence, it is the purpose of this appendix to define uniform
conventions for these processes. Included in such definitions are:

* Definition of standard terms.

* Rigorous definition of coordinate systems, including shorthand
acronyms for each to simplify categorization and documentation.

* Derivation of standard coordinate-transformation procedures and
nomenclature.

* Definition of shorthand notations for use in rigorous definition of
the various motion entities.

A.1 Definitions of Terms

This subsection serves to clarify the various terms applied throughout

an analysis, particularly as regards the definition of motion entities.

A motion entity is a position, velocity or acceleration. Motion

entities are generally expressed in either vector or vector column (matrix)

form.

A.I.I Vectors

A vector is used in vector mechanics to relate the positions or motions

of two points. The vector can be translational (e.g., a position vector, or

translational velocity) or rotational. A vector requires three specific

definitions. To avoid confusion, one should specify these three definitions

with checklist reliability:

l.--What type of vector is it (position, velocity, acceleration,

translational, rotational)? This will be called the type (T) of

vector.

2.--What is being located, or what is moving (point, axis system,

etc.)? Call this item the subject (S).

3.--With respect to what (axis system, point, etc.) is the subject

located or moving? Call this base (B).
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For example, if one is defining the velocity vector V*, the checklist
would require language such as

"V* is the translational velocity [I. type] of aircraft c.g. axes [2.
subject] with respectto inertial space [3. base]."

Vectors are rather abstract in that they do not require Resolution (R)

for their definitions; i.e., a specific coordinate system need not be

defined in order to rigorously define a vector entity. Vectors are simply

"arrows" in space between point pairs, and represent whatever the analyst
wishes to assign them.

A column vector or column matrix is numerical representation of a

vector. The column--vector is a group of numbers called "elements"; each

represents a component of a vector resolved to a specific coordinate

system.

Hence, the column vector requires a fourth item in the definition

checklist, which is

4.--With respect to what axis system is the entity Resolved (R)?

As an example, let v be a column vector representing the vectorial

entity V*, discussed previously. Then a proper definition of v would be

"v is the translational velocity [I. type] of aircraft c.g. axes [2.

subject] with respect to inertial space [3. base], resolved to c.g.
axes [4. resolution]."

If any of these four key definitional items is not clearly indicated,

then the column vector is essentially undefined and much confusion and

error can result. This particularly is true when computer algorithms are

used to solve for vector entities. It is the author's experience that poor

definitions of motion entities and coordinate systems are the primary

causes of errors in computer dynamic analyses.

A.I.2 Time Differentiation

As is well stated in standard texts on mechanics, careful definition of

time differentiation is required. _en the derivative of a motion entity is

taken with respect to time, the specifc coordinate system in which the

derivative is taken must be specified. This, of course, is because the time

derivation of motion entity is different among coordinate systems which

accelerate with respect to each other.

Derivatives of vectors are therefore seen to require a fifth

definition: the axis system with respect to which the differentiation is

taken. Call this the differentiation base (D) for the derivative vector.

A.I.3 Scalars

Vectors have directorial properties as described above, but scalars do

not. A vector is represented by a group of numbers whereas a scalar is

represented as a single number.
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The mass of a body, for example, is a scalar entity. The velocity of
the body would be represented by a vector. The magnitude of the vector is a
scalar.

A vector can be expressed as the vector sum of three orthogonal
vectors. The orthogonal vectors are parallel to the axes of some defined

orthogonal coordinate system. The magnitude of the orthogonal vectors are

scalars. These scalars are stacked in a column to become the "elements" of

the matrix or "column-vector" representation of the vector.

The matrix representation of a vector -a group of scalars- is a very

convenient vehicle for use in computer implementation of vector processes.

A. 1.4 Operators

Rectangular arrays of scalars can be defined as "operators". These

operators can be added and multiplied in accordance with specific rules
defined for such operations.

In vector analyses, such operators are often called "tensors" or

"second-order tensors". They arise naturally in the derivation of the

rotational equations of motion for rigid bodies; in this form they are

often called "inertia tensors". Another term sometimes given to the

second-order tensor is the "diadic product".

Square matrix operators are also used for various transformation

procedures. Such transformations are the subject of later sections of this
document.

A.I.5 Nomenclature Conventions

Conventions are defined below which can be used to derive and document

dynamics analysis equations. The conventions have been defined for

convenient incorporation into computerized systems including word
processors.

In order to use computer systems to store and print dynamical
equations, some ground rules are needed which are somewhat different from

expressions. The ground rules of this type used herein are:

* Greek or other nonstandard characters are not used.

* Groups of standard graphics characters are used to form some special

symbols (e.g., the integral sign).

Equations can be formed on a computer-driven printer if

super-scripting, sub-scripting and backspacing are allowed, and if the

printer can process all characters in a full ASCII set. Many printers are

available that can do this. Table A-I presents the full ASCII character
definitions.
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With these ground rules already stated as a guide, the following

specific nomenclature definitions can be made:

* Scalar entities are represented by groups of characters beginning with an

upper-case letter• These are sometimes called "zeroth order tensors".

Examples of scalar nomenclature:

• --i

Sb , V , Mb , Mq , W(S)

* Column vector entities are represented by groups of characters beginning

with a lower-case letter. These are sometimes called "first order

tensors".

Examples of column vectors are:

vb , wa , b , u(S)

Note the functional dependency on the scalar parameter, S, in the last

example, above.

* Second-order matrices can be viewed as operators on vectors or operators

on the other second-order matrices• These are often called "tensors" or

"second-order tensors" in dynamic analyses• Such entities are represented

by groups of characters beginning with an upper case letter and ending

with a period• The period distinguishes the operator from a scalar•

Examples of operators are:

R. , X3. , Fdv. , X(v).

Note the functional dependence of the X. operation on the vector v in the

last example, above•

* Time derivatives of entities can be represented in a number of ways.

Superscript dots and primes are often used to denote differentiation with

respect to time and space (i.e., some nontime parameter), respectively•

Differential notation is also sometimes used, e.g.,

d (v) / dT

for differentiation of the item in parentheses with respect to the

scalar, T.

In the present conventions, the superscript dot is used to represent time

differentiation with respect to the axis system of resolution. For

example, if v is a velocity resolved to, say, coordinate system RAX, then

v" is the time derivative of v taken with respect to RAX.

Not withstanding this convenient nomenclature, clear and specific

"checklist" definitions should be given in all derivations defining the

differentiation base.
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* The symbol for integration is
-b

_i" a I dS ,

for integration of the interand I with respect to S between boundaries a
and b.

The summation process is indicated by, for example:

s.
--1 1

where the scalars Si are summed for i = 1,2...N.

* If a vector is to be defined from a group of scalars, it is convenient in

printed material to show the column vector as a transposed row vector.
For example:

T

v = ( Vl, V2, V 3 )

defines a column vector as composed of three scalar elements Vl, V_ and
Vq . Superscript T denotes the transpose of the row vector to produc_ the
c_lumn vector.

* Identity vectors and operators are often needed in an analysis. The

following conventions are therefore defined, for convenience.

identity vector:

T
i = (I, i, i)

specific identity vectors:

m

iI = (I, 0, 0) _

T
i2 = (0, I, 0)

i3 = (0, 0, i)T

The identity operator I. is defined as a diagonal square matrix with

unity elements on the diagonal and all other elements zero.

Specific identity operators can be defined as were the specific identity

vectors. For example, I?. is a matrix of all zeros except for unity in
the second diagonal position.

A.2 Coordinate System Definitions

A.2.1 General Conventions

As in the case with motion entities, rigorous definition of coordinate

systems is required if an accurate dynamic analysis and subsequent computer

implementation are to be accomplished.
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For motion analysis, the standards used herein for coordinate systems
incorporate:

* Right-handed orthogonal systems

* Specific axes in a coordinate system numberedI, 2 and 3.

For example, if the column vector v is expressed in three elements
resolved to the axes of a particular coordinate system, then the elements
will have notation Vl, V9 and V3 . Note the upper case notation, since the
elements of a column'vectOr are scalars•

A.2.2 Abbreviations for Coordinate Systems

Many coordinate systems are usually required in a dynamic analysis.
Abbreviating their full names is very convenient, especially in the
checklist definitions of the various entities used in the analyses.
Abbreviations take such forms as RAXfor "rotor axes", IAX for "inertial
axes", etc.

A.3 A Shorthand Notation for Entity Definition Checklists

The previous sections have expressed the powerful need for careful and

comprehensive definitions of motion entities in dynamic analyses. Most

motion entities require four items in the specification list: type,

subject, base and resolution. Derivative entities require a fifth

specification, the axis system in which the derivative is taken: the

differentiation base.

Force and moment vector columns need type, subject (point of

application) and resolution specifications.

A shorthand notation can be defined which simplifies laborious

definitions for all items in an analysis• The shorthand also is a tool for

discipline--it can be incorporated in each entity definition as a standard

procedure, so that its presence assures proper and complete definition of

each item used in an analysis. Consider the shorthand nomenclature

T : ,S : , B- ,R : ,D : .

abbreviations of various items are substituted where the "underline" areas

appear in the suggested nomenclature. With the exception of the "type" part

(T:) of the shorthand specification, the abbreviations usually refer to

coordinate systems.

An example specification is

T:XV, S:CAX, B:IAX, R:CAX

Such a specification may apply to the vector, say v . In this case, v

is a translational velocity of center-of-gravity axe_ (CAX) moving wit_

respect to inertial axes (IAX) resolved to CAX. If a differentiation is

• would be specified:involved, a fifth item is added• For example, v r

T:XV, S:CAX, B:IAX, R:CAX, D:CAX
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In this case, the dot denotes differentiation with respect to time taken in
the CAX system. Note that the type specification refers to the
undifferentiated vector, in this case v . The dot is viewed as an
operation m°nthe entity, but the type of entity does not change because of
the indicated presence of the operations.

To further aid in the shorthand process, the following abbreviations of
entity types is suggested.

XP Translational or linear position - a position vector

RP Rotational position: i.e., an angular vector

XV Translational velocity

RV Rotational velocity

XA Translational acceleration

RA Rotational acceleration

F Force

M Moment

A.4 Operations on Scalars, Vectors and Operators

Standard texts on tensor mechanics define the types of operations that

can be performed with scalars, vectors and tensors. Some of these

operations are summarized below for completeness of this document, as they

apply to the matrix representation of scalars, vectors and tensors.

A.4.1 Operations on Scalars

Straightforward arithmetic operations include addition, subtraction,

multiplication, division; standard operations of the calculus include

differentiation and integration.

A.4.2 Operations on Vectors

Column vectors can be added and

additions or subtractions of their elements.

a + b = (A 1 , A 2 , A3)T + (B 1 , B2 , B3)T

T
= (A 1 + B 1 , A2 + B2 , A 3 + B 3)

The process of subtraction is identical.

subtracted by performing scalar

If a and b are vectors

(A4.1)
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Two types of vector products are defined, one which results in a scalar
and one which results in another vector.

The scalar product is the product of the magnitude of two vectors times

the cosine of the angle between vectors. For column vectors, the scalar

product is the sum of the products of the elements. For the example vectors

a and b previously defined, the scalar product is

Sab = A1 B1 + A2 B2 + A3 B3 " (A4.2)

another form of this expression is

Sab = aT b (A4.3)

where aT is a row matrix formed by transposing the a column matrix.

Sab = Sba (A4.4)

The vector product or "cross product" of two vectors is defined as a

vector normal to the plane created by the two vectors being multiplied,

with a magnitude equal to the product of the individual magnitudes times

the sine of the angle between the operand vectors. If the two operands, say

a and b, are column vectors, the cross product is conveniently expressed

using a special cross operator,

Vab = cross product vector = X(a).b

where the skew-symmetric matrix operator is defined

X (a).=

_mw

0

A3

-A 2

-A 3

0

A 1

A 2

A 1

0

(A4.5)

One important property of the cross product operation is expressed as

X (a). b =-X (b). a = X (-b). a (A4.6)

Another property is

X (a). a = 0 for all a. (A4.7)

The argument indicated for X. in the definitions presented above is a

vector. The argument can also be a scalar if X. carries a subscript

indicating which positions the scalar is to occupy. Note the equivalence of

the following situations in this regard:

X. (A). is equivalent to X (a).
1

with a = Ai.
1
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Other useful relationships associated with the cross product operator

involve triple products:

X (a). X (b).c = (aT c)b - (aT b)c = S
ac b - SabC

'-aT -SabX (a). X (b). X (a). = b X (a). = X (a).

(A4.8)

(A4.9)

These relationships can be proven by processing the matrices and comparing

results--element be element.

Division of vectors is generally not defined.

A.4.3 Operations on Second Order Tensors

Tensors are added and subtracted by element, as are vectors. Two

operand tensors so processed must, of course, have the same dimensions

(same numbers of rows and columns); the tensors need not be square.

Multiplication of tensors can occur in the form

A. = B.C. (A4.10)

but B. must have the same numbers of columns as C. has rows. If B. has i

rows and j columns, and C. has j rows and k columns, then A. is of

dimension i by k.

In general, the tensor product is not commutative, so B.C. is generally

not equal to C.B.

A tensor can premultiply a vector to produce another vector, as in

a = G.b (A4.11)

This form is the standard form used in transformation procedures, where a

vector resolved to one coordinate system is converted to a column

representing the same vector resolved to another system.

Division of a tensor can occur if it is square and nonsingular. The

process is called "inversion" in the matrix vernacular, and is denoted

herein with superscript negative one (-i). If the inverse of a matri×, say

M., exists, and

a = M.b (A4.12)

then

b = M.-la (A4.13)

The rules and methods associated with inversion are many: expression of

these is beyond the scope of this document.

One rule on tensor products worth noting here is

(A.B.) T = B.T A. T (A4.14)

where superscript "T" denotes the transpose.
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A.4.4 The Calculus of Scalars, Vectors and Tensors

Scalars, vectors and tensors are called matrices, when expressed as

arrays of scalar elements. All matrices can be differentiated and

integrated by element. For example, the derivative of a column vector with

respect to some parameter, say S, is vector whose elements are the

derivative of the original vector elements with respect to S.

A.5 Standard Rotational Coordinate Transformations

Transforming motion and loads entities form one coordinate system to

another is one of the most common procedures performed in solving dynamic

system equations. Standardizing these processes, and using uniform

notation, reduces the probability of error to a considerable degree. Also,

standardization leads to relatively "clean" notation, simplifying the tasks

of technical documention and computer coding.

In the author's experience, the poor and nonuniform selection of

notation is a primary cause of error, second only to poor definition of

motions entities and axes. Poorly designed notational systems lead to

excessive use of multiple subscripts, superscripts, primes, hats, bars,

etc., which lead to typographical and computer coding errors.

The purpose of this subsection are to define standard coordinate-

transformation methods and to specify uniform nomenclature conventions for

such processes.

A.5.1 Resolution Transformations

Since vectors do not require resolution, their definitions are not

affected by coordinate frames not being parallel. Column-vectors, however,

do require resolution for their definitions, and therefore require
transformation.

Suppose, for example, that r is some position column vector, resolved
a

to the a axls system (AAX), and rh is a column vector representing the same
entity as r but resolved to the D axis system (BAX) Thena

rb = R.r a (A5.1)

where R. is a 3 x 3 rotational transformation matrix. R. will be the

identity matrix if the a and b axis systems are parallel.

The R. array is also called the matrix of direction cosines.

Many methods are available for calculating the matrix, R. . One

convenient method was developed by Euler, and involves synthesizing R.

using the product of three arrays which are easy to derive and remember.

Suppose one starts with AAX, and rotates about this system's number 3

axis an angle, Y3 " A new system emerges; call it system x. Figure A.I
shows the process.
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both systems lie normal

to the page pointing

away from reader.

Figure A.I Number 3 Axis Eulerian Rotation

Direct inspection of Figure A-I reveals that, if R=.. , and R
elements of the column vector r , resolved to AAX, th_ Ra2 a3

a

Rxl = Ral cos Y3 + Ra2 sin Y3

Rx2 = -Ral sin Y3 + Ra2 cos Y3

Rx3 = Ra3

or in matrix notation

rx = Ra3 (Y3) • ra

the number 3 rotation matrix is defined

are

(A5.2)

R 3 (Y3). =

cos Y3

-sin Y3

0

Imm

sin Y3

cos Y3

0

0

0

1

(A5.3)

Subscript 3 was used on R. to denote rotation about the number 3 axis.

Now, without trying to envision the complete process in space, simply

study the rotation from the x system to the second generation system, say y

axes; the rotation is now about the number 2 axis of the x system and

through an angle, Y_ . A figure similar to Figure A.I can be prepared and

the transformation-equations again written by inspection. The result
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ry = R2 (Y2). rx (A5.4)

where

R 2 (Y2). =

cos Y2

0

sin Y2

0 -sin Y2

1 0

0 cos Y2

(A5.5)

A similar process is followed for rotation about the number 1 axis of

the y frame, through the angle Yl ' to produce the third-generation system.

if Y3 ' Y? and Ylhave been selected properly, the third-generation system
will be t_e b sys_tem. Hence

rb = R1 (YI). ry (A5.6)

R 1 (YI). =

QDm

1

0

0

0

cos Y1

-sin Y1

0

sin Y1

cos Y1

(A5.7)

Combining Equations A5.2, 4 and 6, one sees that

rb = R1 • R 2 • R 3 • ra (A5.8)

and by comparison with Expression A5.1

R. = R1 . R 2 . R 3 (A5.9)

(The arguments in the rotational arrays have been dropped in Expressions

A5.8 and 9 for convenience.)

Equation A5.9 follows from Statement A5.8 since the elements in r are fully

arbitrary.

It should be noted that, one axis system can be rotated to another by a

series of separate rotations in any order. The 3-2-1 convention is standard

in rigid body analysis such as used for aircraft simulation, but any number

of rotations about axis numbers in any order can be used. Note that the

orders and numbers of rotations only affect the definitions of the selected

angles. The term "Euler angles", however, usually implies the order 3, then

2 and then i, so that values specified for Euler angles carry this implied
order.

This system for synthesizing R. is convenient because the individual

(single-axis) rotations are easy to derive, easy to memorize, and

convenient to synthesize from design drawings presented as orthographic

projections. An important property of the orthogonal rotation matrix is

R i (Y)- = RT (-Y). (A5.10)
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where i can be i, 2 or 3. This property can be observed by inspection of
Definitions A5.3, 5 and 7. Also, by direct calculation, it is easy to show
that

R-I= RT
i. i. (A5 .ii)

A.6

A.6.1

Translational Transformations and Relative Motions

Motion Transformations

Relative transformations arise when motion and load entities are viewed

from different coordinate frames (axis systems). For example, Figure A.2

shows the a and b axes (AAX, BAX), and a point P located positionally with

respect to AAX by the vector p_ . P is located with respect to BAX by p and

BAX are located with respect _o AAX by b. If all three of these position

vectors are resolved to the same axis frame, then

Pa = b + p (A6.1)

P

iV-- /B x

Definitions

Pa - T:XP/S:P/B:AAX/R:BAX
p - T:XP/S:P/B:BAX/R:BAX

b - T:XP/S:BAX/B:AAX/R:BAX

v - T:XV/S:P/B:AAX/R:BAX

V_ - T:XV/S:B/_/B:_/R:B/_

wb - T:RV/S:BAX/B:AAX/R:BAX

Figure A.2 Relative Locations of a Point, P.

The translational velocity of P with respect to AAX is calculated by

simply time-differentiating Equation A6.1.

Vp = d (pa) /dT = d (b) /dT + d (p) /dT (A6.2)

where the derivatives are taken in AAX. If p" is the derivative of p taken

with respect to time in BAX, then a major theorem in vector analysis states

that

d (p) /dT = p" + X (Wb). p (A6.3)

where w. is the rate of angular rotation of BAX with respect to AAX,
resolve_to BAX.

A special condition arises when P is fixed with respect to BAX; for

instance if BAX are fixed to a rigid body and P fixed to the same rigid

body. In this case p" is zero and Equation A6.2 and 3 can be combined to

yield

Vp = vb + X (Wb). p (A6.4)
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where vb is a direct substitution in notation for d (b) /dT. Equation A6.4
can be recast using Formula A4.6

Vp = vb + X (-p).w b (A6.5)

where now the cross product matrix X. is a constant because p is constant

with respect to time (when viewed in BAX).

Equation A6.5 is essentially a translational transformation expressing

the velocity of a point P, which has been translated from BAX the constant

p, by transforming known BAX motion entities vb and w b.

The second derivative of p_ with respect to time taken in AAX is also

of particular interest. If AAX is a Newtonlon frame (i.e., AAX are fixed to

the stars), then this second derivative becomes the acceleration of P. The

second derivative is achieved by differentiating Equation A6.2 in AAX:

d (Vp)/dT = d (vb) /dT + d (p') /dT

+ X (d (wb) /dT). p + X (Wb). d (p) /dT (A6.6)

Equations A6.3 can be applied to items in Equations A6.6 that involve
differentials.

d (p") /dT = p'" + X (Wb). p"

d (wb) /dT = wb" + X (Wb). wb

Noting that X (wh). wb is identically zero, the individual differential
equations can be used to rewrite Equation A6.6 in the form:

d (Vp) /dT = d (vb) /dT

+ p'" + 2 X (Wb). p" + X (Wb'). p + X2(Wb). p (A6.7)

Equation A6.7 is called the Coriolis theorem and is used extensively in

Newtonian dynamic analysis.

Equation A6.5 can be differentiated in BAX to yield another

transformation. If P is fixed in BAX, this result becomes

Vp" = vb" + X (-p). wb (A6.8)

Equations A6.5 and A6.8 transform motion entities associated with BAX

(moving with respect to AAX) into entities associated with P (moving with

respect to AAX). Note that these transformations yield the translational

motion entities for P. Rotational transformations are trival, since

Wp = wb (A6.9)

Wp" = wb" = d (wb) /dT (A6.10)

In summary, key motion entities expressed for BAX moving with respect

to AAX can be transformed to the same types of motion entities for point P

which has been translated for BAX by the constant vector p. The necessary
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transformation equations are Expressions A6.5, 8, 9 and i0 which are linear

because p is constant.

A.6.2 Loads Transformations

Consider loads entities defined as follows:

f - T:F/S:P/R:BAX

m - T:M/S:P/R:BAX

fb - T:F/S:BAX/R:BAX

mb - T:M/S:BAX/R:BAX

The column vectors f and m represent force and moment loads applied to P.

The theory of statics shows that these apply equivalent loads acting at BAX

given by the expressions

fb = f (A6.11)

mb = m + X(p).f (A6.12)

Equations A6.11 and 12 essentially transform f and m to act on a translated

system, BAX. These transformations are analogous to motion entity

transformations given by Formulae A6.5 and A6.8.

Rotational transformations used to change the resolution of a column

vector work the same on loads columns, of course, as they do on motion

entity columns.

A.7 Derivation of the Rigid Body Equations of Motion

The relationships presented in previous sections can be used to derive

the general rigid-body equations of motion. Consider BAX of Figure A.2

fixed to the body. Let _ be an infinitesmal portion of the body mass
loacated at point P.

The Coriolis theorem (Equation A6.7) states the acceleration of the

mass under force dfb, so that Newton's second law of motion is expressed

df b = dM d(Vp) /dT (A7.1)

If the force df b is integrated throughout the body, the total force is
calculated

• X2(Wb )fb = M d(v b) /dT + (X(w b ). + ")Pm (A7.2)

where constant zeroth and first moments of mass are defined

M = _/V dM (A7.3)

Pm

The integrations are taken throughout the entire volume (V) of the body. If

Bax are located at the body's center of gravity, then Pm vanishes.
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Equation A6.12 shows that the moment at BAX due to force df on 61 is

am b = X(p).df

Using the Coriolis theorem again with Newton's second law, and integrating

throughout the body.

mb = X(Pm).d(Vb)/dT + Im.W b" + _/_2(w b) .pdM (A7.5)

where the second moment of mass or the inertia tensor is defined

Im" = --/-V X2(p)'dM (A7.6)

The integral term in Equation A7.5 can be rearranged to more convenient

form, so that the final rotational equation of motion is expressed

= X(Pm).d(Vb)/dT + Im.W b" + X(Wb).Im.W b (A7.7)%

The rearrangement of the integral term is justified by applying the triple

product relationship A4.8 to both forms used above, which will reveal the

equivalance of the two formulations.

The term Im.W b is the body angular momentum

h = Im.W b (A7.8)

So that the moment applied at the body center of gravity is the time

derivative of the angular momentum (derivative taken with respect to

inertial axes). Thus

dh/dT = h' + X(Wb).h (A7.9)

by application of Formula A6.3, so that Equation A7.7 becomes

mb = X(Pm).d(Vb)/dT + dh/dT (A7.10)

The center of gravity of the body is located with respect to BAX by the

vector Cg, so

Cg = Pm/M (A7.11)

With this definition the force and moment Equations A7.2 and A7.7

become

= M(d(Vb)/dT + (X(Wb'). + X2(Wb).)Cg) (A7.12)fb

mb + _(Cg).d(Vb)/dT + Im.W b" + X(Wb).Im.Wb (A7.13)
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A.8 Derivatives of Euler Angles

Subsection A.5 presents the Euler method for synthesizing the matrix of

direction cosines used to change the resolution of a vector. For many

dynamic analyses it is necessary to relate the time derivatives of the

Eu!er angles to the rotational velocity of a coordinate system.

For example, let a be the column vector formed of three Euler angles

needed for the direction cosine matrix between AAX and BAX of Figure A.2.

Place the number-I rotation as AI, the number 2 rotation as A2 etc.

If BAX has the rotational velocity wh with respect to AAX, this
velocity will give rise to dynamic Euler angres, a" . A relationship can be

derived between w. and a" by viewing each element of a" , on at a time, and
. D

then by resolvlng these independent rate components to BAX. If W is
defined Y"

w b = Wy.a" (AS.I)

then the transformation is expressed

Wy. = II. + RI.I 2. + RI.R2.I 3. (A8.2)

where individual Eulerian rotation matrices are used to resolve each Euler

rate element to BAX. The partial identity arrays I.. are used for

convenience in selecting the desired elements of a iniExpression A8.2.

The array W . can be inverted by expanding Equations AS.I and 2 and

solving for a" .XThis process reveals the inverse of Wy. to be

1

= 0

0

w-÷
Y

tan A2 sin A1

cos A 1

sin A 1 / cos A 2

tan A 2 cos A 1

-sin A1

cos A1 / cos A2

(A8.3)

which can be confirmed by multiplication with A8.2 to yield the identity

matrix.
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The purpose of the analysis presented in this appendix is to derive a
mathematical model for an aeroelastic rotor system. The model is intended
to be applicable to rotors with very rigid blades (such as propellers) or
rotors which have limber blades (such as helicopter and wind turbine
rotors) where blade elastic motion has a significant effect on system
operation.

The math model derived herein is intended to be incorporated into
larger analyses, so that it becomes a component of a total simulation
model. The rotor math model is needed to calculate the loads applied to the
rotor supports by the blades, given the motion of the supports and control
variables input to the rotor models.

The aeroelastic rotor analysis has been derived using procedures
originally presented in Reference 5. The analysis presented below is
complete, however, and should not require references other than standard
texts on mechanics.

The models are derived viewing the rotor blades as massless elastic
beams to which are attached blade "elements". Each blade element has an
infinitesmal radial dimension, and is treated as a rigid body shaped as an
airfoil. The blade element generates loads which are applied to the
massless beam portion of the model, to complete the derivation of the
partial differential equation representing the aeroelastic properties of
the blade.

The D'Alembert approach to Newtonian dynamics is taken, where mass
times acceleration is negated to becomean apparent force applied to the
massless structure. The acceleration of the blade element is calculated
given the motion entities for the gimbal ring and the flexible motions of
the massless beam. This acceleration applied to the inertial properties of
the element is given a negative sign to become the "inertial loading" of
the blade.

The aerodynamic environment in which the blade element is operating
(i.e., the airspeed, Machnumberand angle of attack) is calculated in the
analysis. It is presumedthat someaerodynamic definition for the blade is
defined, usually in tabular form, that will produce the nondimensional
aerodynamic loading coefficients (lift, drag and momentcoefficients) as a
function of the aero environmental parameters. The coefficients are then
further processed to yield dimensional loads applied to the element due to
aerodynamics.

The inertial and aerodynamic loads are summedfor all elements in the
model to produce forcing functions which act on the blade flexibility
characteristics, and which also sum to the final loads applied to the
gimbal ring by the blades.

The blade motion problem is of particular importance in rotors with
limber blades. The "modal" analysis method is used herein, where the basic
blade model derived as a mass-elastic continuum is transformed to "normal
coordinates" which are functions only of time. This approach minimizes the
number of degrees of freedom that must be incorporated in an analysis to
calculate blade motions within a prescribed accuracy. The method is to be
distinguished from the "nodal" method used in someanalyses, which requires
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many more degrees of freedom than the modal analysis to achieve the same
accuracy.

Further sections of this derivation contrast the modal and nodal
methods of structural analysis in moredetail.

A primary difference between the material presented below and that of
the references is nomenclature. The nomenclature is all new and has been
prepared for ease in word processing and data base managementsystems. The
nomenclature has also been defined so that it relates very closely to
program instructions that are actually executed by computer.

Appendix A describes the nomenclature conventions used throughout the
analysis. In addition, a numberof analysis methods are defined in Appendix
A that are used throughout the presentations below without further
definition.

Table B.I defines the nomenclature used in the derivations below.

B.I Fundamental Approach- Coordinates

A major portion of the analysis simply involves definition of suitable

coordinate systems followed by routine application of the methods

documented in Appendix A. Table B.2 summarizes the coordinate systems used

throughout the presentations.

The analysis begins with the definition of a "reference point" which

lies on the rotor shaft centerline near the center of the rotor hub. A

nonrotating coordinate system called "hub axes" (HAX) has its origin at

this reference point. The motions of HAX with respect to the stars (called

"inertial axes" herein- IAX) are taken as given entities to the rotor

analysis. These motions are to be given as translational and rotational

inertial velocities, and the time derivatives of these entities taken with

respect to hub axes. Additionally, the translational and rotational

velocities of HAX with respect to the air mass in the vicinity of the rotor

are also given to the analysis.

The "rotor axis system" (RAX) is defined with its origin and number-3

axis coincident with the corresponding HAX entities. RAX spin with the

rotor, however; they have a rotational rate of Z radians per second with

respect to HAX- the spin vector being coincident with the number-3 axes of

HAX and RAX. For consistency with past nomenclature conventions, a positive

Z is associated with RAX moving with respect to HAX about the negative

number-3 axis. If z is the rotational vector representing the rate RAX

moves with respect to HAX, then z is defined

z = (0,0,-Z) T (BI.I)

The spin acceleration nomenclature used herein is Z'.

The analysis assumes that a gimbal system is installed between the

shaft and an outer gimbal ring. The blades in the rotor are rigidly .n;_:z_ed

to this outer gimbal ring. The gimbal analysis defines the motion of this

outer gimbal ring with respect to hub axes, to that outputs from the gimbal

analysis are inputs to the rotor blade analysis. The gimbal system may be
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of any configuration such as teetering (see-saw rotors) or floating (e.g. a

ball joint).

Appendix C presents the gimbal analysis. The gimbal equations transfer

the motion entities of hub axes to "shank axes" SAX, and then transfer

forces and moments applied to the gimbal ring by the blades back to hub

axes. Viewed in this way, the gimbal analysis is an interface between the

rotor (including the outer gimbal ring) and the rotor support system which
defines the motions of HAX.

The shank axis system for a blade is fixed to the outer gimbal ring. If

the gimbal is undeflected, the number-3 axes of hub and shank axes are

considered coincident, as are the origins. A separate shank axis system is

defined for each blade in the rotor, so that each blade shank lies at the

origin of its associated SAX system. The projection of the blade on the

shaft normal plane lies generally along the negative number-i SAX axis, to

conform to conventions of previous rotor analyses.

Since the analysis of Appendix C has treated the transformations

through the gimbal interface, the task of this present document involves

the analysis of the blades mounted to the gimbal ring. The objective is to

calculate the forces and moments (i.e., the loads) applied to the support

system located at HAX by the rotor system, given the HAX motion entities,

the rotor spin rate and acceleration, and the controls applied to the

system.

B.2 Blade Coordinates

Aeroelastic rotors are so called because the blades deflect enough to

change the loads to a considerable degree. Accordingly, it is necessary to

calculate the motions of the blades before the loads can be computed. These

motions must be defined in terms of suitable coordinates.

Figure B.I shows the major coordinate systems incorporated in the

aeroelastic blade analysis. The shank axes are depicted toward the hub end

of the system. The "blade reference line" (BRL) moves along the span of the

blade, being defined by the locus of all points "P", one of which is shown

in the Figure.

BLADE AXES 5z BLADE

I

1 "%
v

_ SHANK
AXES (SAX)

Figure B.I Blade Reference Line Geometry
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The BRL can be located within each section of the blade at any
arbitrary point. The quarter-chord point is often chosen because this is
the aerodynamic center for conventional airfoils. Other points (for
example, the locus of blade-section centers-of-gravity) could also be
chosen.

The BRL is defined as made up of specific mass molecules located in the

blade. This abstraction allows the definition of a line coordinate, S,

which will always be bounded between 0 and the total length or radius of

the blade, say R. When the blade is under loading it can bend in many

directions. Regardless, a specific value of S will locate a specific point,

P, which is attached to a specific molecule in the blade at all times. The

actual number of S is defined to be the line integral distance between the

shank axis system origin and the point P, when the blade is fully unloaded.

After any loads are applied, the line integral between SAX and P will, of

course change, but the value of S identifying P will remain the same.

The parameter S is used throughout the analysis as the variable of

integration; many functions that vary with blade radial position (and often

time) are integrated as S moves from 0 to R. The BRL coordinate concept

outlined above precludes S itself ever being a function of time.

The "blade axes" (BAX) are located with origin at P, with the number-I

axis tangent to the BRL at P and pointing generally toward SAX. Like the

BRL, BAX are fixed to the mass molecules at P, so the locations of these

coordinates are always defined. The specific angular orientation of BAX

(about the number-i axis) can be specified in any convenient manner.

Locating BAX on each blade section so the number-2 axis is parallel to the

blade chordline is one convenient definition, but others are possible. Some

analysts prefer orienting BAX with respect to the airfoil line of zero

lift, for example.

With the definitions of the BRL and BAX complete, the blade motion

problem comes to defining the motions of BAX at every S as a function of

time. The next subsection discusses the fundamental approach taken toward

this portion of the analysis.

B.3 BRL Shape Definition

The "blade motion" problem is needed to define the shape of the BRL,

since BRL motion often has a significant effect on loads applied to the

supports by the complete rotor system. This subsection defines methods and

nomenclature used to define the geometry of the BRL.

The Vector, b, locates the point P (at station S) with respect to SAX.

The resolution of b is also SAX. This position vector is, of course, a

function of S,T where T is time.

The vector, f, is used to refer to a column of control parameters that

mechanically change the blade structure. On most rotors only a single

parameter "feathers" the blade; hence the choice of "f" to represent the

"mechanical configuration" column. A column is used in the analysis for

generality, because multiple mechanical controls have been implemented in

some past rotor designs.
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The array R. is used to convert vectors resolved in SAXfor resolution
to BAX; this is the matrix of direction cosines defined in Appendix A.

This analysis incorporates concepts of "quiescent" or "initial"
conditions of the BRLto support the validity of certain assumptions to be
madelater in the derivations. The rotor blade is first viewed as spinning
at somenominal rate under a prescribed airload. These nominal conditions
are usually chosen to lie somewhereclose to the middle of the blade
operational profile, so that BRLmotions from a quiescent shape associated
with these nominal conditions are small. When operating in the defined
nominal or quiescent conditions the geometry of the BRL is defined by the
"initial shape" versions of b and R., denoted b o and R . herein Underoo . "
the quiescent conditions, the rotor spin rate is _c, the mechanlcal control

is f and the spin acceleration is defined as zero.
o

Now consider a change of f from fo while the blade is otherwise in its
quiescent condition. The BRL will move to a new position defined by the

nomenclature b and R .. A transformation array R.. can be defined which

rotates the _AX from the nominal (initial s_ape) position to the

intermediate initial shape position. The direction cosine arrays are
related as follows-

Ro. = Rf.Roo. (B3.1)

The shape of the BRL after movement of f from the initial value will be

called the "controlled shape" of the blade. Note that the initial shape is

a constant in time but the controlled shape varies with time if the column

f does.

Elastic motions due to applied loading other than the defined quiescent

loading will move to BRL to its final position at any instant of time. The

column vector b refers to the final absolute position of the BRL at any

time, so that the positional elastic deformation is b-b . An "elastic
• • O ,

angular" deflection column, e , is also deflned. This column contalns three
Euler angles which define _he matrix of direction cosines R .. R .

e e
transforms a vector resolved to BAX in the controlled position to reference

BAX in the final instantaneous position of the BRL. The rotations are

defined-

R. = Re.R o. (B3.2)

It is convenient for some portions of the analysis to group all six

elastic deformations into a single vector, We; in the conventions of
Appendix A-

we = ((b-bo)T,eaT) T (B3.3)

The column vector w completely defines the shape of the BRL given the

controlled position of _his coordinate, w is the deflection entity which

arises because of the application of loadseto the BRL, other than the loads

defined for the quiescent condition.

Note the resolution of the elements in w . The first three elements are
e

resolved to SAX, and the last three are resolved to BAX in the controlled
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position. These resolution conventions are important, and will be used when
the model for BRLelasticity is defined.

B.4 Loads

.Asstated previously, loads modelsare derived using "blade element" or
"strip" theory. In this approach the blade is viewed as a massless elastic
body to which are installed an infinite number of blade elements. Each
blade element has mass and is usually shaped like an airfoil (except near
the root for most rotors) so that aerodynamic loads are applied to the
element of infinitesmal radial dimension.

The blade element supports applied loads from inertial and aerodynamic
origins, and applies these to the massless BRL. The element has radial
dimension, dS. A distributed force, f, and moment,m, can be envisioned, so
that the force and momentvectors supported by the element are fdS and mdS,
respectively. Subscripts "i" and "a" are applied to f and m to denote
"inertial" and "aerodynamic" origins, respectively.

For consistency with the BRL geometric entities defined above,
distributed force vectors are resolved to SAX and distributed moment
columns are resolved to the control-positions of the BAX.

As was the case with the BRLgeometric coordinates, it is convenient to
place the force and moment distributed loading columns into a single
loading column, p -

p = (fT,mT)T (B4.1)

The symbol Po denotes the p column applied to the BRL for the defined
quiescent loading conditions. This quiescent loading is made up of an
aerodynamic contribution and an inertial distributed load due to
centripetal acceleration.

The acceleration of the blade element is calculated based on the motion
of the BRL (produced by the blade-motion portion of the analysis) and on
the motion of SAXproduced by the gimbal analysis. The method of D'Alembert
changes the sign of this acceleration and views the result (multiplied by
the mass of the element) as an applied force. This force must be supported
by the massless BRLto produce the calculated acceleration. Viewed as such,
this force is the "inertial load" on the massless BRL.

The mass of blade element is defined as MhdS, where Mb is the
distributed mass of the BRL, a function of S. The b-lade element also has a
distributed inertia, Ih., so that the rigid body rotational inertia of the
blade element is I..dS. Most of the elements in this distributed tensor
vanish because of _e vanishingly small radial dimension of the element,
dS. Only elements that do not contain products of the number-I BAX
dimension (i.e., the dS dimension) are nonzero in Ib..

The other primary source of loading on the BRL is aerodynamic. The
motions of SAXand the BRLcause the element to movewith respect to the
air mass in the vicinity of the element, and this motion gives rise to
aerodynamic distributed loads on the blade element. The aerodynamic
equations can be written for the airfoil of the blade element (with
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infinitesmal span, dS). Appropriate aerodynamic math models can then be
used to define the distributed aerodynamic loading functions given the
relative motions of the element. The details of typical aero models are
described in a later subsection, below.

The distributed loads on the BRLcause elastic deformation which is the
blade motion problem. The loads also sum to produce the total force and
momentvectors applied by the BRL to SAX. In the analysis, these columns
are given the symbols fs and ms, respectively.

B.5 The Elastic Model

Rotor blades can have very complex structural designs that give rise to

irregular structural properties. Many rotors have one or more hinges

installed for control and stress relief at certain radial stations: such

hinges introduce singularities in the stiffness properties of the blade

about the axes of the hinges.

The mathematics of structural analysis is presented in many standard

texts. A conventional vehicle for definition of the elastic properties of a

structure is the "stiffness influence function" or "kernal function", K ..

In BRL geometric notation defined above, the stiffness model for the _RL

can be expressed-

p(S) - Po(S) =--/_o Ke(We' f' S, N). We(N) dN (B5.1)

where N is a dummy variable of integration substituted for S. Note that the

elastic deflection coordinate, w , is incorporated as an argument in the
. . 0

influence function. This indlcates that the structural properties of most

whirling rotor blades are very nonlinear. The nonlinearity precludes the

usual and convenient assumption that deflections do not affect loads. The

loading, particularly due to the centrifugal forces supported radially by

the whirling blade, contribute significantly to the stiffness properties.

As the rotor spin rate Z changes, the BRL shape changes which reflects the

change in centrifugal loads supported by the structure. These loading

changes modify the effective stiffness of the structure.

Also note the presence of the feathering control column, f, in the

stiffness function argument. Mechanical control positions portions of the

blade with respect to other portions; such geometrical changes will produce

significant changes in the stiffness properties.

Equation B5.1 shows the loads and displacement columns as functions

only of S. In a dynamical situation, p, w e and f all become functions of
time as well as the S radial coordinate.

This analysis assumes that appropriate definition of the stiffness

influence function is provided as data defining the blade properties. The

need for this definition is minimized in later sections of this document,

however, as the parameters associated with eigenanalysis are effectively

substituted for the most significant portions of the structural influence.

Refer to Subsection B.8 for further discussion of these substitutions.

B-8



B.6 Inertial Distributed Loads

As stated previously, the distributed inertial loads are actually

accelerations (times distributed mass) viewed as applied loads in the
method of D'Alembert.

The blade element at station S is viewed as a rigid body. The equations

of rigid-body motion have been derived in Appendix A, Subsection A.5.4.

These equations can be applied directly to the blade element situation to

compute the force and moment on the element, Changing the signs on these

distributed force and moment vectors produces the loads applied to the BRL.

The following expressions arise from these

derivations of Appendix A (Refer to Table
definitions)-

fi = -Mb (Ubr + R_ (X(w_). + X 2 (Wb).) Cg )

m i = -M b X(Cg). R. Ubr + Ib. w_ + X(Wb). ib. w b

Ubr = d(Vb)/dT

or, restated in expanded form-

Ubr = u s + b'" + 2X(Ws).b" +X(w_).b + X2(Ws).b

us = V's + X(Ws)" Vs

Pi = (f_' m_ )T

applications of the

B.I for nomenclature

(B6.1)

(B6.2)

(B6.3)

(B6.4)

(B6.5)

B.7 Aerodynamic Distributed Loads

The methods of Appendix A can be applied to compute the velocity of a

rotor blade element with respect to the air in the vicinity of the element.

The result (in the nomenclature of Table B.I) is-

Var = R. ( Vas + b" + X(Was). b )

Note that this vector is resolved to BAX.

(B7 .I)

This calculation of the aerodynamic velocity vector of BAX views the

air mass surrounding the rotor as moving as a rigid body: this air body can

have three translational and three rotational velocity components of motion

with respect to inertial space.

Mathematical models associated with aerodynamic interference and wind

must be used to compute the air mass motion- these models are viewed as

outside the rotor models in this derivation. (Aerodynamic interference

velocities are air motions created by devices submerged in the air mass

that support aerodynamic loads).

With some analyses this rather simplified view of air motion is not

adequate, and additional modes of motion must be allowed for the air mass.

In these cases suitable models must be derived and used to compute the air
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motions. The results of such computations are often added directly to v
at each radial station for each blade in the rotor. The expression for t_
total aerodynamicvelocity is written-

V = V +Va ar aa

where v is the "augmentive" local aerodynamic velocity added to the basic
a

calcula_lon to produce the final result. As stated above, this augmentive

interference component must be supplied to the rotor analysis from outside

models dealing with the complexities of aerodynamic interference
velocities.

The Mach number and angle-of-attack of the blade airfoil at S are

computed directly from elements of va-

M 2 2 2= (Va2 + Va3) / _c (B7.3)

A b = tan -I (Va3/Va2) (B7.4)

where V is the velocity of sound. The aerodynamic pressure is given by the
c

expression-

Qa = 1481 M2 Pr (B7.5)

where P is the ambient pressure ratio: the local atmospheric air pressure

dividedrby sea-level standard pressure (2116 psf). Classical aerodynamic

theory shows that the aerodynamic forces produced by a body in an airstream

are proportional to this aerodynamic pressure times a characteristic area.

Therefore, the force on an infinitesmal blade element divided by the

element radial dimension (i.e., the force per unit radius or distributed

force) is proportional to the dynamic pressure times the chord. A

convenient constant of proportionality for the loads expressions is thus

stated-

Qac = Qa Cb (B7.6)

The specific characteristics of the airfoil at a blade station will

give rise to nondimensional coefficients of force and moment, which might

be expressed as functional relationships as follows-

Cfa = Cfa (Ab, M) (B7.7)

Cma = Cma (Ab, M) (B7.8)

Note that the functions indicate dependence on angle-of-attack and Mach

number. Some airfoils may have other dependencies. For example, if a slot

is incorporated in the blade from which an air sheet effluxes, then the
momentum coefficient of this efflux will also influence the force and

moment loads coefficients.

Specific models for the loads coefficients will have to be prescribed

for an analysis before the rotor characteristics are defined. These

prescriptions often take the forms of data tables that can be interpolated

to yield the necessary functional definitions.
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Assuming that a suitable numerical process yields the necessary
aerodynamic coefficients, the distributed aerodynamic force and moment
columns for the blade element can be defined-

T
fa = Qac RT RI (Abl). Cfa (B7.9)

ma = Qac Cb Cma (B7.10)

and the final distributed load column stated-

T mT.TPa = (fa' a; (B7.11)

These expressions when combined with a suitable tabular (or other)
definition of the blade element aerodynamic properties suffice to define
the aerodynamic distributed loads.
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B.8 Blade Motion Analysis

B.8.1 Nonlinear Blade Motion Equation

Equation B5.1 is the elastic model for the massless BRL. The

distributed load column, p, arises from inertial and aerodynamic phenomena.

Adding these contributors and eliminating p produces the generalized blade

motion equation-

Pi(S, T) + Pa(S, T) - Po(S) = /_o Ke(W e, f, S, N). We(N, T)dN (B8.1)

The solution approach taken in this analysis is to transpose the loads

columns to the right hand side of the equation, and then to add terms

representing linear components of the inertial loading function and elastic

property to both sides of the expression. The result is-

M. w_" + KI. we +_/_o Kep(S, N). We(N, T) dN = Pn(S, T) (B8.2)

Pn = Pi + M. wi" + KI. we +Pa - Po ---/-_o (Me" - Kep') We aN (B8.3)

where now, Pn is the "nonlinear" distributed loading function. The arrays
M. and K_. are linear portions of p_ associated with the relative

acceleration (i.e., acceleration of the B_L with respect to SAX but not the

total acceleration with respect to inertial axes) and an inertial

stiffness. The inertial stiffness arises because the mass of the blade

moves within a conservative centripetal acceleration field, creating the

apparent inertial forces that appear as stiffness terms. Note that these

linear mass and stiffness operators are both functions of S.

The "perturbation" stiffness influence function K . is a linearizede
form of K . Note that the linearized stiffness functlon _as the BRL elastic

.e
deformatlon coordinate and the feathering column removed from its argument.

No assumptions have been made in equations B8.2 and B8.3. The same

items have simply been added to both sides of the equation. The items have

been chosen to represent the most powerful mass and stiffness terms in the

equation, however, so that the added terms on the right hand side of the

equation effectively subtract the linear mass and stiffness properties from

the full nonlinear representations of these entities. The result is a

nonlinear forcing function on the right hand side of the equation with very

weak (and in some cases, negligible) mass and stiffness influences. Of

course the modified distributed loading column still has strong influences

due to BRL rates, aerodynamic loads (which tend to relate mostly to BRL

rates and not position or acceleration) and inputs to the rotor analysis

due to HAX motions and control.

Many standard texts derive Maxwell's reciprocity theorem for structural

influence functions. Since the perturbation function in the above equation

is now linear (it does not depend on deflections or loads) this theorem

applies and can be expressed-

= KepT(N,S). (B8.4)Kep(S,N) •

This relationship arises because of the principle of energy conservation

within a conservative (linear) structure; the principle is essential to

major conclusions made in the normal mode analysis presented later.
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The next subsection addresses analysis methods that are to be applied

to the reformulated blade motion equation, Expression B8.2.

B.8.2 Nodal vs Modal Analysis Methods

Equation B8.2 is a partial integro-differential equation with two

independent parameters, S and T. The equation is linear if the nonlinear

forcing function, p_ is viewed as a driving function provided outside of

the solution of the_basic equation itself.

The approach taken herein is to solve the blade motion equation

numerically. The results of the solution provide all entities required to

solve for the forcing function, which is then applied to the equation for a

short time duration. The equation is solved for new BRL motion entities,

and the process is repeated in a loop.

The equation is still in the form of a continuum, and therefore

represents an infinite number of degrees of freedom. This form must, of

course, be converted to a finite number of coordinates for practical

solution.

Two basic methods are often used so solve such equations, the

finite-element or "nodal" approach and the eigenfunction or "modal"

approach. As stated before, the second of these has been chosen for the

present derivation, but the paragraphs below present the trades that were

made in arriving at the chosen method.

The Nodal Method

In this approach, the equation is reformulated to apply to a finite

number of rigid bodies; each pair of adjoining bodies is connected with a

massless beam. The bodies are called nodes, and are each given up to six

degrees of freedom. The equations for the nodal model can be derived by

converting equation B8.2 into a summation equation instead of an integral

expression, facilitated by allowing each blade element (node) to have a
finite radial dimension.

The nodal model so derived can be expressed as a second order matrix

equation in constant coefficients. The entire equation can be integrated

numerically (solving for the motions of all of the nodes) to represent the

flexible blade motion problem.

The major problem with this approach is the number of nodes required to

get good accuracy. If the model is to be a high fidelity representation of

the blade dynamics for, say, the frequency range associated with the first

two natural modes of motion, up to 30 nodes will be required to represent

the natural frequencies accurately. Such a model will have up to 180

degrees of freedom, just to reproduce two physical modes with reasonable

accuracy.

When the equation is solved numerically, the numerical step size (on

time) needed to maintain numerical stability of the solution will be

governed by the highest mode in the model, in this case the 180 th mode.

This mode is, of course, not of interest to the solution, but it will have

to he FrpaFpA nrmn:rlx, mr F_ .................. _,, ,_ go unstable even if

the physical model is stable.
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This situation causes the nodal approach to the forced-motion solution
to be very expensive and often totally impractical. The nodal model can be
used to calculate the natural frequencies and modeshapesfor the blade,
however, and these resulting "eigenfunctions" can then be used to perform a
modal analysis for the forced-motion problem.

The Modal Analysis Method

In this method, the continuous dynamical representation of the blade

structure is transformed into an infinite number of equations, each

describing the participation of a single natural mode of vibration in the

overall dynamical response of the blade. This infinite number of total

differential equations in time can then be reduced to a small finite number

of equations by rationalizing which of the natural modes will remain

unexcited for the particular analysis being conducted. The analyst should

know the frequency content of the forcing function on the blade (i.e., the

frequencies of interest in the function p_). Knowing this, a rational

rejection of modes above certain natural frequencies can be made because it

will be known that these higher modes will not participate in motions under

the function Pn"

In this way, a minimum number of modal degrees of freedom can be used

in the forced-motion numerical integration, with predictably accurate

results. The approach will be a minimum cost approach considering the

expense of data processing time when the model is executed in a computer.

With these background considerations in place, the next step in the

analysis process is the eigensolution of Equation B8.2- the subject of the

next subsection.

B.8.3 The Eigenproblem

The Eigenproblem deals first with the solution of the homogeneous part

of Equation B8.2, i.e., the expression with Pn = 0. The equation is now
linear with two independent variables, S and T.

The usual approach to solution of such equations is to propose a

solution form which is the product of two functions, one a function only of

S and the other a function only of T. In this case, a simple sinusoidal

function is proposed for the portion dependent on time.

w = w. sin W. T (B8.5)
e 1 1

This solution form can be substituted into the homogeneous equation to

become:

M. w i + K I. wi +--/-_o Kep(S' N). wi(N) dN = 0 (B8.6)_W i

This is called the characteristic equation which requires eigensolution.

There will be solutions to Equati._n B8.6, i=1,2,., infinity, each with
a specific value for the eigenvalue W . and each with a specific function

w.(S) called the eigenfunction or modes_ape. These solutions are subject to

t_e boundary conditions placed on the BRL, which in this case are zero

position and slope at the root and zero shear force and moment at the tip.
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Many numerical methods are available for calculating the eigenvalues

and eigenfunctions for a structure such as this rotating beam system. The

methods almost all involve reformulating Equation B8.6 into a nodal or

finite element model and then processing the resulting matrix equations.

Sophisticated programs such as NASTRAN have been developed over many years

with facilities for preparing eigensolutions for complex structures.

For the present analysis it is assumed that the eigensolutions are

available for use in formulating this forced-motion solution method. In a

later subsection it will be seen that the eigenfunctions essentially
replace the model for the structural stiffness influence function. The

ramifications of this substitution will also be discussed in that section.

Before leaving the subject of the eigenproblem, an important

characteristic of the eigenfunctions will be demonstrated: their

orthogonality with respect to the structural mass. To show this, consider

two representations of Equation B8.6, one for the i'th mode (i.e., with

eigenparameters W-. and w. incorporated) and the second with the j'th mode.
Premultiply the f_rst e_uation by the transpose of w. and the second

expression by the transpose of w., subtract the equations3and integrate the

result on S between 0 and R. Eac_ term in this equation is a scalar, so any

of the terms can be transposed without changing their value. Also, the mass

and inertial stiffness matrices are known to be symmetric, so they equal

their own transposes. The results of these manipulations produce the

following equation:

-(Wi2 - Wj 2) _ wj T M. w i dS

+ [wj (S) Kep(S,N). wi(N) - wjT(N) K T (S,N). wi(S)] dN dS = 0-- ep
(B8.7)

Recalling Maxwell's reciprocity relationship B8.4, it is seen that the

double integral terms incorporating the stiffness cancel: this occurs

because the order of integration on S and N can be reversed. Since the

eigenvalues are different for each mode (distinct) for most structural

problems, the following relationship emerges:

/--R w_ M. w. dS = 0 , i_j (B8.8)
-- o 3 i

This is the orthogonality expression on the system mass matrix.

The modeshapes are also orthogonal with respect to the system

stiffness. This can be seen by premultiplying Equation B8.6 by w_ transpose

and integrating over the entire blade radius. Since the mass te_m vanishes

when i is unequal to j, the resulting stiffness integrals must also vanish

for unequal i and j- effectively expressing the orthogonality of the

eigenfunctions with respect to the system stiffness model.

[w_ K I. wi + _ wT (S)Kep(S,N). wi(N)dN] dS = 0 i _ j
(B8.9)

These special characteristics of the eigenfunctions distinguish them

from any other functions that may be chosen for the model, in that they

enable decoupling the equations of motion for the system. This process will

be demonstrated in the next subsection.
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B.8.4 Coordinate Transformation Using the Eigenfunctions

Nowpropose a coordinate transformation for Equation B8.2 of the form-

(S, T) = _i wi(S) Qi (T) (B8.10)we

This expression can be substituted into Equation B8.2, and the resulting
formula premultiplied by the transpose of w. and integrated over the
radius. The result is- 3

-- T e_" + wT KI. Wi eiEwjM wi

+ wT % = wT-- 3 Kep -- ] Pn dS (B8.11)

Because of the orthogonality characteristics on the mass and stiffness

properties that were demonstrated in the previous subsection, all terms in

this equation vanish except when i=j. Additionally, for those remaining

terms, Equation B8.6 can be used to eliminate the integrals involving the

stiffness function in lieu of terms involving the system mass and the

eigenvalues. The resulting equation is

(Qi" + WJ 2 QJ) = Sgj , j = 1,2,... (B8.12)Mgj

where the generalized mass and generalized forcing functions are defined by

the following two expressions, respectively:

dS (B8.13)= /-_o wT. M. wMgj _ 3 J

Ggj = --/-_OwT] Pn dS
(B8.14)

Note that the linear portion of the structural stiffness influence function

has vanished completely from the model, although nonlinear stiffness

effects still remain in the forcing function (Equation B8.3). This is the

process mentioned previously, where the structural property is effectively

replaced by the eigenfunctions.

Equations B8.12 are a rigorous representation of the original continuum

because there are an infinite number of them. An infinite number of

independent functions will represent any arbitrary shape of the BRL, so the

solution at this point still invokes no assumptions. All nonlinearities

have been retained in the nonlinear distributed loading function, Pn"

Of course it is impractical to solve for an infinite number of

equations, so the basic assumption on the solution involves restricting the

number of normal mode equations (Expressions B8.12) to only those of

interest in a particular forced-motion solution.

The next subsection presents a number of important observations

regarding the modal representations derived above.

B8.5 Observations on The Decoupled Model

As mentioned before, the decoupled normal mode equations allow the

analyst to have considerable insight into the physics of the problem, in
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order to make good judgments on selecting which portions of the model to

retain and which to discard. The modal equations reflect the natural modes

of vibration of the system which will always characterize the response of

the system under the influence of external loads.

To explore this in more detail, consider Figure B.2 which shows the

dynamic response of one of the Equations B8.12 to the application of

sinusoidal loading with varying frequency. This Figure is often considered

a plot of the "dynamic amplification factor", revealing how the system
responds to stimulation.

A MPLZTUDE
RESPONSE
RATIO

/ AMPLITUDE / !

FREQUENCY, W y

_ I\°_.o . ......

I

-0

-9O

-180

PHASE
ANGLE,

DEGREES

Figure B.2 Frequency Response Characteristics of the Modal Equations

The main interest here is when the resonance frequency, W. is large

compared to the frequency of excitation. When this is the case2 the figure

shows that the equation responds with an amplitude near that exhibited with

forcing functions of zero frequen_I (i.e., a static load) and the phase

lead/lag of the response is zero. For these conditions, the equation is

responding as a massless elastic system. The time derivative term is

negligibly small in this case, so it can be dropped. The resulting

expression is the pure elastic representation of the mode:

2 Qj (B8.15)Mgj Wj = Sgj

This representation is quite suitable for modes whose frequency is

reasonably higher than excitation frequencies of interest (the interest to

be supplied by the analyst).

The massless elastic equation can also be written

2) (B8.16)
Qj = Sgj / (Mgj Wj

which shows that the response becomes less and less as the frequency goes

up. This is the rational basis for discarding all high frequency modes in

the analysis, beyond the frequency range of interest. This assumption can

be made with confidence (assuming that the frequency band of interest in

the forcing function has been well established) because the modal

participation in the shape of BRL is seen to disappear for the higher
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modes. Other analysis methods (such as those that use so-called "primitive"
modeshapes- shape functions that approximate the shapes of interest but
which are not normal modes and therefore do not allow decoupling of the
infinite numberof equations) can not use this rational basis for reducing
the equation set downto a reasonable size.

By restricting the number of normal modeequations only to those modes
of interest, the complexity of the forced motion problem has been minimized
for a given desired level of fidelity. The numerical processes that are
used to solve the equations can be of minimumsophistication, which almost
invariably leads to the lowest cost and lowest risk solution of the forced
motion problem.

The retained equations can be expressed now in finite form using column
vectors to contain the modal coordinates-

q'" + E2. q = g (B8.17)
q

g = Mg? _/ _ D$ Pn (B8.18)dS

2
The array E . is a diagonal matrix with the eigenvalues placed to
correspond toHthe selected normal coordinates. The array M -_. is the
diagonal matrix of generalized masses. The column g c_ntains the
generalized forcing functions each divided by the associated generalized
mass (as indicated by premultiplication by the inverse of the generalized
massmatrix).

The matrix D is called the modal matrix. It is composedof all of the
eigenfunctions associated with the selected modes. Using this array, all
equations B8.10 can be combined into a single matrix expression-

we (S, T) = D(S). q(T) (B8.19)

where it has been shown that D is a function of S but not of time.
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B.9 Geometric Considerations

Equation B8.19 expresses the elastic deflection of the BRL as a

function of the modal coordinates, q. If an adequate number of normal modes

is included in the model, this expression will be accurate. Experience has

shown, however, that BAX motions in a radial direction are extremely

sensitive. Very small motions in this direction ultimately cause large

loads effects at the blade shanks due to the strong centripetal

acceleration field in which the blade is operating.

When a small number of modes is incorporated in the model, Equation

B8.19 fails to produce good results for this sensitive radial motion of the

BRL for operating conditions where the normal coordinates, q, become large.

An alternative method for expressing the BRL position is needed; a method

that will produce good results with a small number of modes operating with

relatively large excursions.

Such a model can be derived if the BRL is assumed not to stretch under

loading. This has been found to be a very good approximation for most

rotors. The tensile deformations of the blades is almost invariably

negligible.

If the BRL cannot stretch, then a vector of length dS can be considered

which projects from the point P (see Figure B.I) in the negative number-I

BAX direction. The vector dS can be resolved by the R. array of direction

cosines, to calculate the corresponding vector, db.

db = -RT.ildS

where the unit vector has been incorporated to show that dS lies along the

number-I BAX system axis.

Dividing this expression through by dS, and using a prime to denote

differentiation with respect to S yields the result-

b' = -R_.i I (B9.1)

.............. _n_an_ _This expression can be integrated w _h r_p_ _o S =_ any _ _ _ _

time to produce the BRL positional shape vector, b.

Returning to Equation B8.19, the modal positional and rotational

deflections can be expressed-

e b = Db. q (B9.2)

ea = Da. q (B9.3)

The modal matrix D. has simply been separated into two parts, one producing

translational deflection and the other producing rotational deflection.

Although Equation B9.2 is fully representative of BRL elastic translational

position only for small q, experience has found that Expression B9.3 is

suitable for representing the angular deflections even for relatively large

modal participations.
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Equation B9.1 can be used to relate the positional and rotational modal

matrices, Dh. and D .. To do this, consider very small modal motions when
the blade is in @ts quiescent state. Under these conditions the BRL

positional shape can be expressed-

b = boo + Db.q (B9.4)

Equation B9.1 can be written in expanded form, noting that the array Rf.
(due to feathering) is unity for this quiescent consideration-

b' = -RToo'RT'ile (B9.5)

For small q, the direction cosine matrix due to elastic motion can be

expressed in the form-

R e . = I. - X(ea)-

and from the definition of the quiescent position-

(B9.6)

b'oo = -R_o.i I (B9.7)

Equation B9.4 can be differentiated with respect to S and then combined

with Expressions B9.3, B9.5, B9.6 and B9.7 to produce the relationship-

D'b. = RToo'XI(1)'Da" (B9.8)

This equation can be used to calculate elements in the modal matrices,

given other elements, so that the input data to a computer analysis is

minimized and made convenient for the user. The expression will also be

used later when the rotor model is reformulated to remove small differences

of large numbers.

A word of caution is extended with regard to Equation B9.6. This form

should be used only for very small q. Significant errors will arise if this

form is used with large modal participations (large q) because the

approximation does not produce accurate results for the small movements the

BRL makes radially with relatively large q. These very small radial

movements produce very significant loads due to the strong centripetal

acceleration field in which the blade is operating. Because of this, a more

rigorous formulation of R . is needed in most analyses where q can become

large, e

Returning to the vector -dSii, the derivations in Appendix A can be
used to calculate the rate of a point on the BRL dS away from the point P.

If the difference between the rates of the point P and a point dS away is

taken, and the result divided by dS, an expression for rate change vs S is

created. Resolving this result to SAX produces an expression for the time

derivative of b, differentiated with respect to S-

b'' = -RT X(Wbs ). iI (B9.9)

The Coriolis theorem derived in Appendix A can be used to define the

second time derivative of b, also differentiated with respect to S-
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b'" =  X2(Wbs). + X(Wbs).)il (B9.10)

Equations B9.9 and B9.10 can be integrated from 0 to any position S

along the BRL, to produce the first and second time derivatives of the

vector b (time derivatives taken with respect to SAX). These entities are

essential for substitution into Equations B6.3 and B7.1 in order to solve

for the inertial and aerodynamic distributed loads.

The methods of Appendix A can be used to produce the array, R . from

the Euler angles in the column e . These angles are small, but care _ust bea
taken in approximating the trlgonometric functions comprising R . if

important effects are not to be lost. Experience suggests that all _f the

trigonometric functions can be represented as series including all

quadratic terms. Cubic and higher order terms can usually be discarded.

Note, especially, that the cosine of any of the Euler angles cannot be

represented as unity: it must be incorporated as unity less half the angle
squared.

Appendix A also shows how to relate the rates resolved to a body-fixed

system as functions of the time derivatives of the Euler angles. In the

nomenclature of this section, this expression is-

Wbs = Wy. ea (B9.11)

so that the BAX rate w. can be computed for substitution into Equation
B9.9. Direct differentiation of this expression yields-

Wbs = W_. ea + Wy. e_ (B9.12)

which enables computation of Wbs for substitution into Expression B9.10.

These BAX rotational rate and rate-derivative entities relate BAX

motions to SAX. The inertial distributed loads Expressions B6.1 and B6.2

require BAX rotational entities with respect to inertial axes• The methods

of Appendix A enable representations of these entities to be expressed as-

wb = R. w s + Wbs (B9.13)

w" = w w" + X(w b) • Wb_ (B9 14)b -'" s " Wbs

B.10 Shank Loads

The equations for distributed inertial and aerodynamic loads can be

integrated along the BRL to calculate the loads applied to SAX by the

blade. The expressions are-

fs =-/_o (fi + fa ) dS (BI0.1)

ms =-/_o [X(b). (fi + fa ) + mi + ma] dS (BI0.2)

If it is necessary to calculate the internal loads within the blade, they

can be produced by similar equations. One convenient formulation is to

integrate the distributed loads starting at the blade tip, so that the

initial values of the force and moment vectors supported internally by the
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fb = ---/-SR (fi + fa ) dN

mb = --/-_R [X(b). (fi + fa ) + mi + ma]dS

(B10.3)

(BI0.4)

B.II Equat{on Summary

The previous subsections have presented all of the expressions

necessary for the analysis of an aeroelastic rotor system. The equations

are very general, and can be further processed from this point depending on

the type of analysis to be conducted. Obviously, various assumptions can be

invoked to simplify the models depending on the accuracy needed.

Before continuing to refine the models, it is convenient at this point

to summarize them. Table B.3 collects the equations needed to form a

complete model. Note that the equations carry the same identification

labels (e.g., B3.1) as when originally derived in this presentation.
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B.12 Reformulation

The equations of aeroelastic rotor analysis are notorious for their

subtle combinations which, in effect, produce small differences of large

numbers that are very important to the accuracy of the analysis when

performed by computer. Making simplifying assumptions in the models is

perilous because often such simplifications eliminate very important
effects.

There are effects in the models which produce very large numbers in the

calculations, but these large numbers subtract in later stages of the

analysis leaving only small terms which are very important. The results of

these characteristics of the model often cause computer implementations to

produce very inaccurate results. Even computers with very large word sizes

can be swamped by these problems. When the equations are implemented on a

computer with limited significant figure accuracy (such as a 16-bit integer

digital computer or an analog computer) these problems can completely

destroy the accuracy of the solution.

The answer to these problems lies in reformulating the equations in

ways that will cause the subtractions of large numbers to occur in the

equations before they are programmed. If this is done correctly, the

computer can be used to solve directly for the important "small-

difference" parameters, which can retain good accuracy because the large

masking terms have been eliminated.

The specific ways of reformulation must be selected with thorough

knowlege of the physics of the problem- the models and their special

idiosyncrasies must be well understood so that the critical areas that

produce numerical problems can be identified and reformulated.

One of the most important areas requiring reformulation lies in the

expression for the inertial distributed loading, and more specifically, in

the expression for the translational acceleration of BAX with respect to

SAX. The large terms appear in the models due to the strong centripetal

acceleration field established by the spinning of the rotor system.

A "modified" acceleration expression can be stated as follows-

Umb r = Ubr - e_" - 2X(z). e_ - X2(z). (boo + eb) (B!2.!)

so that modified inertial and aerodynamic distributed forcing functions can

be expressed-

fmi = - _ Umbr

(Cg assumed = 0)

(B12.2)

fma = fa - fao (B12.3)

The term f is simply the distributed aerodynamic load defined for the
ao

quiescent loading as discussed in Subsection B.4. This function varies only

with S (not with time) and is normally input to the analysis.

The terms incorporated in the acceleration expression essentially

comprise the linear components of the acceleration due to BRL elastic

B-23



movements.Because these are the linear components, they can be processed
separately from the nonlinear calculations, and carried through the entire
analysis including those areas where large terms subtract. These processes
will be conducted in the next subsections.

The terms incorporated in Equations BI2.1 have been given signs to
cause subtractions from Ubr. Because of this, Umbr will be significantly
smaller than Ubr.

Other specific terms might be incorporated in this inertial
reformulation depending on the judgement of the analyst; The expression
presented above has produced good results, however, and is therefore
recommendedas a method for significantly improving the accuracy of an
aeroelastic rotor numerical analysis.

The modified acceleration must be processed into the rotor models in
essentially two different ways-

* The generalized force and shank loads expressions B8.18, B10.1 and
BI0.2 must be processed so that the modified distributed loading
functions appear in their integrations on S in lieu of the unmodified
loading functions.

* A formulation for f . is needed wherein the subtractions implicit in
Equation BI2.1 are _de properly; that is, in a manner that will not
diminish the accuracy of fmi when it is calculated by computer.

The next subsection shows how to process the generalized and shank
loads expressions to produce reformulated models for these entities.
Following this presentation, Subsection B.14 addresses the process of
summingloads produced by all the blades applied to the gimbal ring; this
summation also creates small differences of large numbers that need
reformulation. Subsection B.15 presents a carefully formulated model for
calculating the modified distributed inertial forcing function.

B.13 Generalized and Shank Loads Expression Reformulation

Equations BI2.1 through B12.3 can be rearranged to the forms-

fi = fmi - Mb(eb" + 2X(z). eL + X2(z). (boo + eb))
(B13.1)

fa = fma + fao (B13.2)

and these versions for the distributed forcing functions can be substituted

into the radial integrals needed to calculate the generalized forcing

functions which act on the BRL normal mode equations and the shank load

integrals. The paragraphs below describe these substitutions on a step- by-

step basis, but intermediate versions of the loads expressions being

reformulated are not printed for brevity. The reader should be able to

reproduce the intermediate expressions of the models as they are

reformulated, if the steps described for the processes are executed

carefully.
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Someconvenient definitions of scalar entities involving the variation

of rotor spin rate from the quiescent value are expressed-

Z =Z/Z -i
p o

Zz = (Z / Zo)2 - i

With these definitions, equation BI3.1 can be

fi =fmi - Mb[eb" + 2X(Zo)" ab + X2(Zo )" (boo + eb)]

- Mb[-2Z p ZO X3(1). e_ -ZzZ _ (I.-I3.) (boo + eb) ]

(B13.3)

(BI3.4)

rearranged as follows-

(B13.5)

where some of the special characteristics for the cross-product operator,

X, (described in Appendix A) have been invoked.

The first bracketed term in Equation B13.5 is the linear portion of f.

that occurs when the BRL is in its quiescent position. The portions of thi_

term that involve acceleration and position, eh'" and eb give rise to the

mass and stiffness arrays M. and KI. that were discussed in Subsection B.8.
Also note the steady term involvlng b which is part of the quiescent
loading function, p_, that was discuss_ in Subsection B.4. Terms in the

generalized functioUn that emerge because of these effects must be

discarded, since these influences have already been subtracted from the

nonlinear distributed loads Function B8.3. This process will be described

in more detail, below.

Equation B13.5 can be substituted into B8.3 and that result substituted

into Equation B8.18 to produce an expression for the generalized forcing

function column, g. When this is done a number of constant factors

involving integrations with respect to S emerge. These factors have been

given special nomenclature and summarized in Table B.4. Using these

definitions for the constant operators, the expression for the generalized

forcing function can now be written in terms of the modified distributed

loading functions-

g =--/_o Gp" (fmi + fma )
dS

+ (Zp Gzv. + Gv.) q" + Zz (gbo + Gzq" q) + Gk (f' q)" q (Bi3.6)

Equation B9.2 and its time derivatives have been used in the substitutions

which produce Expression B13.6.

The operator G . which appears in the radial integration is defined in

Table B.6 as an _gregate function of S. Its definition in this manner

allows a computer solution external to the time-domain solution of the

rotor equations to solve for this operator. The resulting operator becomes

input data for the time-domain rotor analysis, which lessens the workload

in the time domain and therefore increases the computational speed.

When Z is zero the rotor spin rate is at its quiescent value. Note

that, when Zthis is the case, Equation B13.6 has no linear dependencies on

q'" or q. This is because such linear dependencies are presumed purged from

this expression, having been included in the eigenanalysis portion of the

B-25



model. Also note that no constant terms appear in the equation, since these
vanish due to the definition of the quiescent loading function, Po' and the
subtraction of this steady column in Equation B8.3.

The stiffness factor, G0 that appears in the equation is defined in• KTable B.7. This factor arlses because of the nonlinear portions of the BRL
stiffness influence function addressed in Subsection B.8. Although Table
B.7 defines this function, external analyses often produce this G- array
directly. The array can be presented in tabular form as a function of f and
q. Since this is a stiffness array, it can be effectivel_ included in the
equations as variations in the eigenvalue matrix, Eq-. (See Equation
B8.17).

For most analyses, the definition of the BRLquiescent conditions made

previously allow this nonlinear stiffness matrix to be neglected. If data

is available to describe this array, however, it can be incorporated in the

analysis as shown above.

Equation B13.6 combined with Expression B8.17 produces the full

blade-motion equation required for the analysis. Only weak functions of q

and q" appear on the right hand side of the diagonalized equation which

enhances the stability of a numerical integration process to a considerable

degree. Because the left hand side portion of this full blade-motion

equation is diagonal, an exact solution for this portion of the equation is

easy to formulate for the numerical integration step size on time.

Experience has been very good with solving this equation formulated as

expressed, above.

The shank force calculation defined by Equation B10.1 can be processed

in the same way as the generalized forcing function described above. When

the modified distributed loading columns are substituted, constant radial

integral operators appear which have been summarized in Table B.4. Unlike

the generalized forcing function reformulation, however, the terms

associated with quiescent linear acceleration and elastic position effects

remain. The term associated with q'" that remains is particularly

problematic: it involves very significant differencing of large terms which

can introduce significant errors in the calculation of the shank loads if

not reformulated.

The blade motion equation can be used to eliminate q'" from the shank

loads expression. Equation B8.17 produces q'" while Formula B13.7 produces

the generalized forcing function. Using this approach to eliminate q'"

produces the reformulated expression for the shank force-

fs = fr + Fsqd'(q'/Nb) + Fsq'(q/Nb)

+ fso/Nb + Fsk(f,q).(q/Nb) (B13.7)

where the radial integral portion of the expression is given by-

fr =--/_o Fp'(fmi + fma ) dS (B13.8)

and where the following define operators that are functions of rotor spin

speed-
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Fsqd. = Fqd. + Fzqd. Zp (B13.9)

Fsq. = Fq. + Fzq. Zz (B13.10)

fso = fz Zz + fo (BI3.11)

The operator F . is an aggregate operator that is a function of S. It is
defined in Table B.6 in terms of previously-defined entities. The two terms
shownfor F . in Table B.6 incorporate somevery small differences of large
constants. PThese differences can be taken in a computer calculation

external to that associated with solving the rotor models as functions of

time. The calculations can be made using multiple-precision numerics to

retain accuracy. Since the subtractions occur before being used in the

time-domain calculations, accuracy in the calculation of the shank force

can now be retained, even using computers with limited word sizes.

Equation B10.2 for the shank moment can be processed as was the force

to yield the expression-

ms = m r + Msqd.(q'/N b) + Msq.(q/N b)

+ mso/N b + Msk(f,q).(q/N b)

where the radial integral is defined-

mr =--/_o [Mp.(fmi + fma ) + X(bp)'(fi + MbX2(z)" boo + fa

X(bp-eb).(-MbX2(z).boo+fao) + m i +m a] dS
+

A "perturbation" value for the BRL position vector is defined

(B13.12)

fao )

(B13.13)

bp = b - boo (B13.14)

and special operators that vary with rotor spin rate are defined

Msq. = Mq. + Mzq. Zz (B13.15)

Msq d. = Mqd. + Mzq d. Zp (B13.16)

= m Z + m (B13.17)mso z z o

Note that Equation B13.13 shows the unmodified distributed forcing

functions being operated on by the cross-product operator X(b ).. Since

this perturbation operator is small, it is not necessary (and _t is very

inconvenient) to use the modified distributed loading functions in this

case. The modified loads are used in the major portion of the integration
with operator M ..

P

The operator M . is an aggragate function of S defined in Table B.6.

Like F., this o_rator involves some very small differences of large

number_that are essential to the accuracy of the shank moment calculation.

These subtractions are one of the major reasons for reformulating the

equations, because most computer solutions will suffer with considerable

losses in accuracy if the subtractions occur as the models are being solved
in the time domain.
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B.14 Multiblade combinations

The previous subsection addressed the loads calculations, showing how

to reformulate the radial integrations which produce loads entities to

cause subtractions of large numbers to occur in a computation external to

the time-domain solutions. This reformulation assures accurate calculations

for these radial integrations.

As stated previosly, other problematic differencing occurs when the

loads produced by all the blades in a rotor are summed at the gimbal ring.

These summations, if performed on the shank loads produced for each blade

i, i=l,2,...N b, can be expressed as follows-

fg = Zi R3 (Ybi)" fsi (BI4.1)

mg = Zi R3 (Ybi)" msi (B14.2)

Significant increases in accuracy can be achieved by defining additional

entities called "multiblade coordinates". These entities are simply

transformed versions of the normal coordinate column, q, and its time

derivative, as if these were loads. The definitions of the multiblade

coordinate entities are listed below:

D

qs = (I/Nb) _i qi sin Ybi

qc = (i/Nb) _i qi cos Ybi

qo = (I/Nb) _i qi

qds = (i/Nb) !i qi sin Ybi

qdc = (i/Nb) !i qi cos Ybi

(B14.3)

(B14.4)

(B14.5)

(B14.6)

(B14.7)

(B14.8)

where Y.. is the angle between blade number 1 in the rotor and blade number
• D1
i, measured as a "number-3" axis rotation between the SAX associated with

blade 1 and the gimbal axis system (GAX). Recall that GAX are SAX for blade

number 1 in the rotor.

For convenience, the multiblade vectors can be grouped into composite

vectors as follows-

T T T T (B14.10)
qmd = (qdo' qdc' qds )

Now define a process that takes an array, say Am . (which is an operator
on q or q'), and converts it into another form:
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A (A.).m

0

= 0

A3

A1

A2

0

A 2

-A 1

0

Note: A. -- Row i of A.
1

(BI4.11)

The resulting entity will be called a "multiblade operator", herein.

With these definitions, Equations BI4.1 and B14.2 can be stated in a

different form which will produce good numerical accuracy when solved in

the time domain:

fg = Zi R3(Ybi)'fri + Am(Fsq')" qm +Am(Fsqd ")" qmd + I3"fso
(B14.12)

D

mg = >i R3(Ybi)"mri + Am(Msq')" qm +Am(Msqd') " qmd + I3"mso
(B14.13)

These formulations have caused the subtractions among q and q" to occur

among all the blades in the rotor first, before being operated on by

loads-producing arrays Fs. and Ms.. Additionally, subtractions of large
steady loads in f and m have been eliminated from the model. These

include, among oth_ contributors, the steady root tensile force supported

by each blade which is a very large force that will mask small but very

important "differential tension" terms in almost any type of computer

analysis.

Equations B14.12 and B14.13 are the reformulated total gimbal ring

loads produced by all blades in the rotor. These will be transformed by the

gimbal analysis of Appendix C to produce the final rotor loads applied to

the rotor support system.

B.15 Reformation of the Modified Inertial Acceleration

An expression is needed for Umb r that will produce an
acceptably-accurate calculation for the modified distributed inertial

forcing function, f _, which is used for many radial loads integrations.

Equation BI2.1 prese_½s the basic definition of this modified acceleration,

but this expression cannot be used as-is because small differences of large

numbers will destroy its accuracy. It is necessary to decompose specific

elements of the total acceleration vector, Uh_, and then subtract the
necessary associated entities (term by term)-_o that the differencing

produces acceptable results.

To do this, define "deflection vectors" as follows-

x = b - boo - eb

x" =b" -e_

x'" = b'" - eb"

(BI5 .i)

(BI5.2)

(B15.3)
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These vectors are the differences between the actual BRLposition (and its
time derivatives) and the BRL position that would be predicted by the
linear model of Equation B9.2 (and its time derivatives). Using these
deflection vectors, Equation BI2.1 can be rearranged to the form-

Umbr = us + x'" + 2X(Ws- z).b" + 2X(z).x" + X(w_).b

+ [X(ws - z).X(Ws). + X(z).X(ws - z).]b + X2(z).x
(BI5.4)

In addition to the incorporation of the deflection vectors in critical
areas involving subtractions, the rotor spin vector, z, has been subtracted
from the rotational velocity of SAX (w) in critical areas, so that
accuracy will be preserved whenUmbr is c_eated numerically in a computer.

Expressions Bl5.1 through B15.3 defining the deflection vector (and its
time derivatives) can be differentiated with respect to S, yielding terms
(with primes) that have been defined in previous sections of this document.
Equations B9.1, B9.9 and B9.10 can be used for derivatives of the BRL
position vector, b. Equations B9.2 and B9.8 yield expressions for the
derivatives of eb. Equation B9.7 provides an expression for the quiescent
BRLpositional shape.

These definitions produce complete formulations for the deflection
vector and its time derivatives. In a computer analysis, the tensor
equations presented herein need to be expanded into scalar form. Whenthis
is done, a numberof important subtractions occur which eliminate the small
differences of large numbers that cause numerical problems. These
subtractions are best performed when the expressions are in their scalar
forms; the tensor definitions to not lend themselves to convenient
variations which allow the subtractions to be madeexplicitly.

The deflection vectors and their time derivatives are finally produced
in an analysis by integrating their primed counterparts with respect to S.
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B.16 Collection, Reorganization and Summary of Rotor Models

The previous subsections of this document have presented derivations

for a general aeroelastic rotor model; the derivations have followed the

physical phenomena which give rise to the various elements of the model.

This subsection deals with collecting, reorganizing and summarizing the

models for convenient implementation in a computer program. Figure B.3 is a

signal flow chart showing "subsystems" of the rotor analysis, each

containing some of the math models previously derived. Lines among the

blocks carry nomenclature representing variables input to and output from

the various portions of the analysis. The analysis subsystems (or model

groups) have been given names and numbers, for convenience. Figure B-4

shows a flow diagram of the computations in the rotor model.

The nomenclature presented by Figure B.3 closely resembles the

engineering nomenclature appearing in previous subsections and summarized

by Table B.I. All the letters are upper case, however, and super/subscripts
have been eliminated. In this form the nomenclature is suitable for use in

actual computer code.

Some key conventions have been followed in converting the engineering

notation into computer notation. The nomenclature label always begins with

a letter. Characters following this lead letter character refer first to

superscripts and then to subscripts. Finally, numeral characters define

specific elements of vectors (one-dimensional arrays) or operators

(two-dimensional arrays). Note that the "dots" on the second-order arrays

in the engineering analysis are dropped in the computer nomenclature, being

replaced by two numeral subscripts.

In addition to these conventions, "primed" variables that are to be

integrated with respect to S have been given "I" lead characters for

"integrand". The remainder of these labels follows the other conventions
listed above.

Two-dimensional arrays are to be processed by the computer as "packed"

arrays. The convention used herein is to pack by column, as is standard in

the Fortran language. In these cases, the array is indicated with a single

number in parentheses, where the number represents the total number of

elements in the array.

For example, the operator R. is represented in the computer variables

as R(9), which is a string of nine elements of R stored as three columns.

As stated above, the models developed in previous subsections of this

document need rearranging and collecting for computer implementation.

Tables B.8.1-18 present the models so processed, appearing still in

engineering notation, but with some changes. These changes (made to aid the

computer implementation) will be described in the following subsections.

Key assumptions incorporated in the analysis at this point are underlined.

The subsection numbers are keyed to the subsystem numbers of Figure B.3.

The mathematical model of the rotor has been expanded into scalar

equations and presented in Appendix F; these are the "physical equations".

The equations are presented under numerical subheadings which key to the

subsystem block numbers of Figure B.3.
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B.16.1 Blade NumberSelect

This subsystemproduces the blade number of the rotor to be processed
in series by counting from 1 to N.. Additionally, the sine and cosine of
the angle rotating GAXto SAXfo_ blade i are computed. Last, the state
variables (modal coordinates) for blade i are found in a memory region
storing these variables for all blades, and placed in a region to be used
in calculations for blade i.

B.16.2 Hub to ShankTransformations

Table B.8.2 summarizes a numberof coordinate transformations used in
the model. An important feature incorporated in Table B.8.2 should be noted
- the subtraction of the rotor spin vector, z, from the inertial velocity
columns. This has been done to improve the scaling in the inertial velocity
processing further downstream in the analysis. The vector, z, is simply
subtracted from all of the rotational inertial velocity entities, and the
equations modified as required for consistency throughout. The parameter
WSMZI(3)appears in Figure B.3 representing w .-z produced by the inertial
velocity calculations, so that z does not S_ask small values in w ..

Sl
B.16.3 Radial Station Counter

This subsystemsimply produces the parameter J counting from 1 to NR,
the numberof radial stations used in the blade integrations on S. Radial
stations are those places along the BRL where physical parameters are
defined. Each set of physical parameters is identified with a specific S
value, for use in the integrations. Although not strictly necessary, it is
assumed that blade radial stations are equi-spaced in the rearranged rotor

analysis.

B.16.4 Radial Function Generator

This subsystem moves the physical data that is a function of S from the

complete data table to a smaller string to apply only to the present

station being analyzed, station J. This block transfer is made all at once

to avoid later repetitive use of indirect addressing to fetch these

parameters: addressing that is slower than immediate addressing which is

possible when all parameters for a station are consolidated in a physical

memory address space.

B.!6.5 Blade Element Geometry

Expressions from previous derivations are collected for this geometry

section. The equation numbers associated with the models are listed.

Sometimes more than one equation number is listed, which indicates that the

noted expressions were rearranged to produce the result listed in Table

B.8.5. In most cases these rearrangements are straightforward and require

no additional amplification here.

Note that some definitions have been made in Table B.8.5. One is an

assumption on the form of the aray R_.. Firstly, it is assumed that there
is only one mechanical feathering control parameter, f=F. Additionally, R .

is assume-_-to be a pure rotation about the number-l--B-AX axis to move t{e

BRL from the quiescent shape to the control shape. This is a good

assumption for most rotor systems.
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It has been assumed that W_. has negligible effect, so it has been

dropped from Equation B9.1-2[ Thi_ te-_wo--_ai_o__r in the analysis

anyway (where cubic and higher order terms in series representations of

trig functions are assumed negligible).

A series approximation for sine and cosine of the feathering angle has

been made (equations for Fs) which is very accurate for feathering

excursions between +-90 degrees. Rotorcraft seldom see such excursions, but
propellers and wind turbines do.

B.16.6 Shank to Blade Transformations

Equations are gathered from previous derivations as indicated in Table

B.8.6. The equations are repeated without modification.

B.16.7 Distributed Inertial Loads

The inertial moment applied to the BRL is assumed zero in this

collection; this is done because the inertial twisting moments are

invariably small as they influence loads applied to SAX. These moments are

significant in the blade torsional equations, but it is assumed here that

these significant effects have been relegated to the eigenanalysis portion

of the torsional analysis. In other words nonlinear inertial twisting
moments have been neglected.

B.16.8 Aero Geometry

The aero geometry equations have been rearranged to appear in

components of Mach number. The parameter Rvc = l/R_ (the reciprocal of
sonic velocity) has been introduced to eliminate the need for division in

the time-domain solutions, so that components of velocity multiplied by
this factor yield components of mach number for the calculations.

B.16.9 Aerodynamic Coefficient Tables

As before, it is assumed that such tables and proper table look-up

routines are available for the analysis. Spanwise force and number-2 and

number-3 axis aerodynamic moments have been neglected as s----hownin Table
B.8.9.

B.16.10 Distributed Aerodynamic Loads

Equations have been gathered from previous analyses, as shown. The

modified loads column, Pma' is shown composed of the modified force and the
unmodified moment vectors.

B.16.11 Loads Integrand Assembler

For ease in the computer analysis, the integrands in the loads radial

integral operations have been given special "primed" notation in this

subsection. Refer to the equations with numbers shown in Table B.8.11 to

see the origins of these integrand expressions. When converted to computer

nomenclature, these items will have an "I" lead character to denote that

they are integrands for radial integration.
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B.16.12 Radial Integrations

These models simply
integrands as required
entities.

indicate radial integration of those "primed"
to produce final loads and deflection vector

B.16.13 Modal Coordinate Integrations

The blade motion equation is numerically integrated to calculate the
"q" variables as functions of time. As discussed previously, the nonlinear
portion of the model (now included in the generalized forcing function
vector, g, which was produced by radial integration) is held constant for
an interval of time associated with the numerical integration time step
size. The linear portion of the equation (Expression B8.17) is solved
exactly over the interval. This process provides for exact solution of the
powerful mass and stiffness phenomina, while the inexact
(transport-delayed) portion of the numerical solution is restricted to the
weaker nonlinear terms. This approach has worked well in past simulation
experience with the rotor blade motion equations.

Straightforward methods of ordinary differential equations can be used
to find the exact solutions. The values of q and q" are essentially initial
conditions which are to be refreshed to new values one time step, say D
away. Table B.8.13 lists the equations required to "move" the variable_
over the interval. The expressions are in terms of constants involving D
and the eigenvalues in E . Expressions for the constants used in th_
solutions are also given qin Table B.8.13. These costants can be easily
determined in a preprocessing phase so that they do not impede the
performance of the time-domain analysis.

B.16.14 Multiblade Modal Combinations

These models have been taken without modification from the previous
derivations as indicated by the equation labels in Table B.8.14.

B.16.15 Multiblade Loads Combinations

Equations B14.12 and B14.13 derived previously have been separated for
convenience as shown in Table B.8.15° The summations of f . and m i amongrlall the blades in the rotor are madefirst. These componen[sof t_e total
gimbal loads due to radial integration are then added to the other
contributions (from multiblade coordinates) to produce the final gimbal
loads summation. A number of operators must be calculated that are
functions of rotor spin rate. The necessary expressions are shown, taken
directly from previous analyses without modification.

B.16.16 Gimbal Loads Summation

The expressions of Table B.8.17 are summations of the loads acting on
the outer gimbal ring.

B.16.17 Gimbal-To-HubTransformations (Loads)

The expressions of Table B.8.17 are used in the gimbal analysis
presented in Appendix C.
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B.16.18 Gimbal Servo Integrator

Appendix D describes the technique used for the gimbal portion of the

analysis, where a "gimbal error" (the moment about a hinge that should

vanish or have a specific value) is driven to the correct value by a servo

approach. The gimbal error is multiplied by a gain (Kge) to become the
gimbal acceleration.

As described in Appendix D, the concept works but can encounter

stability problems due to the transport delay associated with the numerical

integration process. The instability is also involved with the blade modal

degrees of freedom to a significant degree.

As discussed in Appendix D, small feedback terms from the multiblade

coordinates associated with the blade first flapping degree of freedom

stabilized the servo loop and resulted in good performance in reducing the

gimbal error to zero. Accordingly, terms have been added to the servo

equation of Table B.8.18 which incorporate the necessary multiblade

coordinates. The gains in these stabilizing feedback loops are input as

constants to the analysis; these have been given special nomenclature in
Table B.8.18.

The numerical integration of the gimbal acceleration to produce rate

and position is also described by equations in Table B.8.18. The constants

in Table B.8.18 can be obtained by an external preprocessing computer.
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Table B.I NOMENCLATUREUSEDIN THEAEROELASTICROTORANALYSIS

General Nomenclature Conventions-

u

v

w

f

m

g

q

R.

P

translational acceleration vector

translational velocity

rotational velocity

force vector

moment vector

generalized forcing function vector

normal coordinate vector

matrix of direction cosines

column of loads, force and moment vectors combined

General Subscript conventions

oo referring to the BRL quiescent shape

o referring to the BRL control position

a referring to aerodynamic entities

i referring to inertial loading entities

Nomenclature definitions

Angle of rotation between BAX and the local wind, about the
the number-I axis.

A .

m
Multiblade operator producing a force or moment column by

operating on a multiblade coordinate vector.

b Vector locating BAX with respect to SAX, resolved to SAX.

b
P

b
o

b
oo

c
g

Perturbation version of b. b = b - b
p oo

The b vector when the BRL is in its "control position".

The b vector when the BRL is in its quiescent shape.

Vector locating the blade section center of gravity with

respect to BAX, resolved to BAX.

% Scalar: local blade chord at S.
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Cfa, Cma

m.

D .
a

Db •

ea, eb

E2 .
q

s

r

i

mi

a

ma

ao

g

Aerodynamic coefficients: nondimensionalized force and moment

vectors for the blade section at S.

Modal matrices. D. produces the full six-element deflection

vector, w , by operating on the modal column, q. D .

and Db. p_oduce the angular and positional subvec_ors

of we by operating on q; they are submatrices of D.

Elastic deflections: the first is a column of Euler angles

angles describing the rotary deflection of BAX from the

control position to the final position. The second column,

eh, is the translational movement of BAX from the control

p_sition to the instantaneous (final) position, due to small

modal participation, q.

Diagonal matrix of eigenvalues (i.e., natural frequencies,

squared) for all the modes included in a finite blade model.

Force column. Subscripts denote the following:

acting on SAX

component of f due to radial integration

distributed force on the BRL due to inertial loading

"modified" inertial distributed forcing function

distributed force on the BRL due to aerodynamic loading

"modified" aerodynamic distributed forcing function

aerodynamic distributed force for BRL quiescent shape

force on the gimbal ring due to all blades, in GAX

Fsq., Fsqd., Fzq., Fzqd., Fp., etc.

Operators in the expression for force applied to SAX.

fso' fz' fo

G
gJ

Columns in the expression for force applied to SAX.

The generalized forcing function for the jth normal mode of
vibration.

A column containing all the generalized forcing functions

incorporated in a finite mode model (all forcing functions

divided by their respective generalized masses).

Gv., Gzq., Gzv., %., etc.

Operators in the expression for generalized forcing function.

Ib • The distributed inertial tensor for the blade element at S,

resolved to BAX.

Ke., Kep. Kernal function arrays: BRL stiffness functions. The first

is the general (nonlinear) function while the second is a

linearized version valid only for small deflections of the

BRL from its control position.
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KI Distributed blade inertial stiffness matrix that arises due
to movement of the blade element mass in the centripetal
acceleration field.

m Momentcolumn vector. Subscripts define the specific moment
column involved; similar to those for the force column, f.

Mb Scalar blade distributed mass

M Machnumberof the blade section at S.

M. Distributed mass matrix which operates on the double time
derivative of the BRLdeflection vector, w , to produce a

.

contribution to the distributed inertial loadlng column, Pi"

Mg i Generalized mass for the ith blade mode.

M . Diagonal matrix of generalized masses for all modes included
g in a finite normal mode model for the blade.

Msq. , Msqd. , Mzq. , Mzqd. , %., etc.

m
so

Nb

P

P
r

Qa

Qac

Qi

q

qs' qc' qo

qds,qdc,qdo

qm' qmd

Operators in the expression for moment applied to SAX.

Column in the expression for applied SAX moment.

Number of blades in the rotor.

General loads column formed by stacking f and m force and

moment column vectors. Subscripts listed under the "f"

definition, above, also are used to modify this loads column.

Pressure ratio: ratio of ambient atmospheric pressure to sea

level standard pressure (2116 psf).

Aerodynamic pressure at S.

Aerodynamic pressure times blade chord dimension at S.

Normal coordinate for mode i.

Column of normal coordinates for a normal mode blade model.

Multiblade coordinates: sine, cosine and steady entities.

Multiblade coordinates for q': sine, cosine and steady

components.

Composite multiblade coordinate vectors made by stacking the

generic positional and velocity multiblade coordinate vectors.

R Rotor blade radius
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R.

T

U
a

Ubr

Umbr

V

V
C

W

W.

1

W°

1

W •

Y

OO

f

O

e

none

b

S

as

ar

aa

a

bs

e

Rotational matrix of direction cosines. Subscripts are used

to further define the matrix by indicating the starting and

ending coordinate system in the rotations. Subscripts are

used as follows-

Rotate from SAX to the quiescent position of BAX.

Rotate from quiescent position of BAX to control position.

Rotate from SAX to the control position of BAX.

Rotate from the control position of BAX to final position.

Rotate from SAX to final (instantaneous) BAX position.

Spatial (line) coordinate measured along the BRL from SAX to

BAX. Represents the actual (line) span dimension when the
the blade is unloaded.

Time.

Acceleration of SAXwith respect to IAX, resolved to SAX.

Acceleration of BAX with respect to IAX, resolved to SAX

Modified version of uh. caused by reformulation to eliminate
small differences of I_rge numbers.

Translational velocity vector- subscripts as follows:

S:BAX,B:IAX,R:BAX

S:SAX,B:IAX,R:SAX

S:SAX,B:AIR,R:SAX

S:SAX,B:AIR,R:BAX.

S:BAX,B:AIR,R.BAX.

S:BAX,B:AIR,R:BAX.

Assumes air moves as rigid body.
Local interference air motion.

Total local airspeed.

Velocity of sound.

Rotational velocity vector - subscripts listed under the v

translational velocity definition also modify w. Additional

subscripts on w are-

S:BAX,B:SAX,R:BAX

Elastic deflection vector (not a rotational velocity vector).

It is a generalized translational and rotational position

deflection for the BRL moving away from the control position.

Modeshape for the i-th normal mode of vibration•

Natural frequency of vibration for the i-th normal mode.

Matrix which operates on the time derivatives of Euler

angles to produce the rotational velocity of a subject axis

system with respect to a base system.

Deflection vector; the difference between the BRL position

predicted by a linear modal matrix and the actual position

(instantaneous position): a function of S and T.
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Xo

Ybi

Z, Z
o

z

Cross product operator. X(a).b represents the vector cross

product between vectors a and b.

Scalar angle between blade number i and blade number i. This

is a number-3 axis rotation between GAX and SAX for blade i.

Rotor spin rate. Subscript o denotes the quiescent value of Z.

Vector of all zeros except -Z in the number 3 position:

the vectorial rotor rotational velocity resolved to HAX.
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Table B.2 COORDINATESYSTEMSUSEDIN ROTORANALYSIS

BAX- Blade Axes

Fixed to a blade element: origin identified along the BRL by the line
(spatial) parameter, S. Number-I axis points generally towards hub and is
tangent to BRL. Number-2axis related to blade element by analyst, usually
parallel to the airfoil chord at S.

BRL- Blade Reference Line

Locus of BAXorigins along blade span- these points are considered fixed to
massmolecules of the blade sections, and are chosen within each section by
the analyst. The section airfoil quarter-chord point is a typical BRL
definition. The line parameter, S, measuresthe distance along the BRLfrom
the SAXorigin to a particular BAXlocation. S is the actual length when
the blade is unloaded, but under loading, a particular value of S will
select the sameBAXas would have been selected by that value of S when the
blade is unloaded.

GAX-Gimbal Axes

Fixed to outer gimbal ring so that the number-3axis is coincident with the
number-3 axis of HAXwhen the gimbal is undeflected. The negative number-i
GAX is on or near the projection of the BRLon the number-l,2 GAXplane,
for blade number-i in the rotor. GAXand rotor axes (RAX) are coincident
when the gimbal is undeflected. For teetered rotors with a delta-3 angle,
GAXis not aligned with the teetering axes (see the definition of TAX, and
also Appendix C)

HAX- Hub axes

This frame is fixed to the support system of the rotor so that its number-3

axis lies coincident with the rotor shaft. The origin is inside the hub as

near as possible to the closest point between the BRL and the shaft

centerline. This HAX origin is the "reference point" for the rotor. Motion

entities for HAX are defined to the rotor analysis; loads applied to the

......_ by the rotor (resolved to HAX) are produced by the rotor analysis.

IAX- Inertial Axes

A Newtonian frame fixed to the stars (i.e., Newton's second law of motion,

f=ma, holds in this frame).

RAX- Rotor Axes

The origin is coincident with the HAX origin as are the number-3 axes. RAX

spin with the rotor a rate Z about the negative number-3 axis.

SAX- Shank Axes

The origin is coincident with the GAX origin, as are the number-3 axes. SAX

are rotated about the negative number-3 axis the angle Yh_ so that the

negative number-i axis lies under the BRL projection on_e number 1,2

plane for blade number i. SAX for blade number 1 are coincident with GAX.
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Detailed definitions of the following axes systems are given Appendix C.

TAX - Teetering Axes

The origin is coincident with the RAX origin, as are the number-3 axes. TAX

are rotated the angle Y &bout the number-3 axis from so that the TAX

number-2 axis is parallelCto the teetering hinge.

CAX - C Axes

Fixed to the outer gimbal, and coincident with TAX when the gimbal is
undeflected.

TUAX, CUAX - Axes system which account for rotor undersling.
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Table B.3 FUNDAMENTALROTORMODEL- EQUATION SUMMARY

Geometry

Ro. = Rf. Roo.

R. =R. R.
e o

b' =-R T. i1

eb = Db. q

ea = Da. q

w =D. q
e

D_. : RoTo. X 1 (1).De.

b" =-R T. X (Wbs) .i1

b'" -- -R T.(x 2(wbs). + X (Wbs).)i 1

Wbs = Wy • ea

Wbs = Wy. ea + Wy. ea"

w b -- R. ws + Wbs

R.ws + x CWb . Wbs

Generalized Forcing Function

g = _I _ DT. Pn dS

Blade Motions

q'" +E_. q = g

Shank Loads

fs =--/--_ (fi + fa ) dS

ms =-/_o [X(b)'(fi + fa ) + mi + ma] dS

Nonlinear Distributed Loads

Pn = Pi + M. w_" + K I. we + Pa - Po

--/--_ (Me . - Kep.) we dN

(B3 .I)

(B3.2)

(B9. i)

(B9.2)

(B9.3)

(B8.19)

(B9.8)

(B9.9)

(B9 .I0)

(B9 .Ii)

(B9.12)

(B9.13)

(B9.14)

(B8.18)

(B8.17)

(BI0.1)

(BI0.2)

(B8.3)
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Table B.3 (continued)

Distributed Inertial Loads

fi = -Mb (Ubr + RT (x(w_). + x 2 (Wb).) Cg)

mi = -M b X(Cg). R. Ubr + Ib.W _ + X(Wb).Ib.W b

Ubr = u s + b'" + 2X(Ws).b" + X(w_).b + X2(Ws).b

= v" + X (Ws). v sUs s

Pi ( fT mT T= i ' i )

(B6.1)

(B6.2)

(B6.3)

(B6.4)

(B6.5)

Distributed Aerodynamic Loads

Var = R. (Vas + b" + X(Was).b (B7.1)

v = v + v
a ar aa

= (Va2 +

-i
Ab = tan (Va3/Va2)

Qa = 1481 M2 Pr

(B7.2)

(B7.3)

(B7.4)

(B7.5)

Qac = Qa Cb (B7.6)

Cfa = Cfa (Ab,M) (B7.7)

= c (Ab,M)Cma ma

= RT. T (Ab)fa Qac R1 " Cfa

(B7.8)

(B7.9)

ma = Qac Cb Cma

T TT
Pa = (fa'ma)

(B7.10)

(B7 .ll)
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Table B.4 CONSTANTOPERATORSFROMRADIALINTEGRATIONS

Generalized Forcing Function Operators

gbo o -- b" (I. - I3.) boo dS

_v : -__÷-/_ %_.b X(Zo). Db. dS

Gzv. = +2Z ° Mg_ _ Mb DT-- b" X(i3)" Db" dS

T

Shank Force Operators

Fu. = -/'-'oR Mb D b. dS

Fv. : -2_/-_o%XCZo_"Db'dS

Fzv.:+2Zo_/_% X_i?._b"ds

Fb, : --i_ "b X2CZo_"Db"dS

rzb.:+Z__/-_% <I.- 13.iDb. dS

:Cfsao -- fao dS

_zo:+_-IC% <_._I _oo_

qo : -_I_ Mb x2_Zo)•boods

Shank Moment Operators

Mu": ---/-_o%XCbool"Db"dS

Mv. =-_/--oR _Xlboo).X(Zo),Db, dS

= +2z__oo_X(boo).x(i3).Db. dsM
ZV

Mb. = --/--_ [Mb(X(boo).X2(Zo)+Z_X((I. - I3.)boo).)+X(fao).]D b. dS

2 R

Mzb.: +z_/-__[X(boo).(I.- _3.)- XCCl.- _3.)boo).lDb.dS

mao = _/_Xo (boo) .faodS

2
Mzo : SL/-_o ,%X(boo).(I. - I3.)boo dS

Mio = --/-_ MbX(boo).X2(Zo ).bOO dS
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Table B.5 CONSTANTAGGREGATES

Shank Force

Fqd. = (Fv. + Fu. Gv.) Nb

Fzqd. = (Fzv. + Fu. Gzv.) Nb

Fq. = (Fb. - Fu. E2.)qNb

Fzq. = (Fzb. + Fu. Gzq-) Nb

fz = (fzo + Fu" gbo) Nb

fo = (fio + fsao ) Nb

Shank Moment

Mqd. = (Mv. + M u. Gv-) Nb

Mzq d. = (Mzv. + Mu. Gzv.) Nb

Mq. = (Mb. - Mu. E2.)q Nb

Mzq. = (Mzb. + Mu. Gzq.) Nb

m z = (mzo + Mu. gbo ) Nb

mo = (mio + mao) Nb

Table B.6 AGGREGATE OPERATORS WHICH ARE FUNCTIONS OF RADIUS

- T
Fp. = I. + Fu. Mg_ Db.

Mp = X(boo) + Mu. Mg_ DT• " b"

Gp.= M-÷gDT
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Table B.7 STIFFNESSFUNCTIONS

T K T.,T
Ked. = Ke (f,q,S,N). - Kep (S,N). = (Kfed'' mad)

Gk(f'q)" = -MgI --_o DT(s)"--_o Ked" D(N). dN dS

Fsk(f,q). = _Nb_/-R__O Kfed" D(N). dN dS + NbFu. Gk.

Kfed"D(N).dN

+ -./-_o Kmed.D(N)" dN]dS + NbMu.G k.

Table B.8.1 BLADE NUMBER SELECT (Subsystem i.i of Figure B.3)

a) Produce the blade number count, i

i = 1,2 .... Nb

b) Produce the trig functions (sine and cosine) of Ybi'

sin Ybi = sin Yb cos Ybj + cos Yb sin Ybj

cos Ybi = cos Yb cos Ybj - sin Yb sin Ybj

j = i - 1 Constants: sin Yb' cos Yb

c) Load individual blade modal coordinates q(N m) , q" (Nm) ,

qi ( m ), q.1 (Nm)q''(N m) into staging area qi(Nm), " N
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Table B.8.2 HUBTOSHANKTRANSFORMATIONS(Subsystem1.2 of Figure B.3)

Inertial Velocity

v t = R 3 (Yt) • vh

w t - z = R3 (Yt)" Wh

vtu = vt - X3 (Zu)- (wt-z)

Wtu - z = wt - z

Vcu = R 2 (Qg)- Vtu

Wcu - z = R2 (Qg). (Wtu-Z) + I2.Q _ + R2 (Qg) z - z

= + X3 (Zu). (Wcu-Z)vc Vcu

w - z =w - z
c cu

Vg = R 3 (-Yc). vc

Wg - z = R3 (-Yc). (wc - z)

Vsi = R3 (-Ybi). Vg

Wsi - z = R 3 (-Ybi). (Wg - z)

Operation

HAXTO TAX

TAX TO TUAX

TUAX TO CUAX

CUAX TO CAX

CAX TO GAX

GAX TO SAX

Rotor Speed Variables:

T
z = (0, 0, -Z) ; • _Zd) T * Z + Zz = (0, 0, ; Z = Z° P o

Geometry:

Yt = Yc - Y ;
+

Yi = Y + Ybi ; Ycbi = Yc Ybi

Control:

F i = C 1 - C 2 cos Yi - C 3 sin Yi
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Table B.8.2 (continued)

Aerodynamic Velocity

Vat = R3 (Yt)- Yah

War = R 3 (Yt). Wah + z

Vat u = Vat - X 3 (Zu). Wat

Wat u = War

Vac u = R2 (Qg). Vat u

Wac u = R2 (Qg). War u + I2.Q _

= v + X3 (Zu). wVac acu acu

W = W
ac acu

Vag R 3 (-Yc) . Vac

Wag R 3 (-Yc). Wac

Vas i = R 3 (-Ybi)- Vag

Was i = R3 (-Ybi)- Wag

Operation

HAX TO TAX

TAX TO TUAX

TUAX TO CUAX

CUAX TO CAX

CAX TO GAX

GAX TO SAX

Time Differentiation - Inertial Velocity

V t = R3 (Yt). (Vh - X(Z). Vh)

w t = R3 (Yt). (w_ - X(Z). w h) + Z"

Vtu = Vt - X3 (Zu)" W t

Wtu = W t

Vcu = R 2 (Qg)" (Vtu-X 2 (Qg). Vtu)

Wcu = R 2 (Qg)- (Wtu - X2 (Qg)" Wtu) + I2.Q _"

= v " + X 3 (Zu). w "v_ cu cu

w = w
c cu

= C c,vc

Wg = R 3 (-Yc). W'c

Vsi = R3 (-Ybi). Vg

Wsl = R 3 (-Ybi). Wg

Operation

HAX TO TAX

TAX TO TUAX

TUAX TO CUAX

CUAX TO CAX

CAX TO GAX

GAX TO SAX
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Table B.8.3 RADIALSTATIONCOUNTER(Subsystem1.3 of Figure B.3)

Produce the radial position count: j = 1,2, ... , Nr

Table B.8.4 RADIALFUNCTIONGENERATOR(Subsystem1.4 of Figure B.3)

Moveall radially dependent functions from tables to a
staging area for each j. The functions are,

Function Size

Roo. 9

Rfs 1

Da. 3 * Nm

Db. 3 * Nm

b 3
oo

Gp. 4 * Nm

F . 9
P

M. 9
P

f 3
ao

cb 1
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Table B.8.5 BLADE ELEMENT GEOMETRY (Subsystem 1.5 of Figure B.3)

=Da. qea

ea =Da. q"

ea" = Da. q'"

eb = Db. q

e_ = Db.q"

e_" = Db. q'"

Ro. = R F (F - Fo). Roo.

R e. = Re (ea)

R. = Re. Ro-

R F. = R 1 (Fs).

Rp. = R e • - I. + X(ea).

bp = x + eb

b" = x" +e b

b = bp + boo

Wbs = Wy(e a). ea

Wbs= ea

T )i 1x, = R T. (_R T. (RT.- i.)-Rp.oo

X" = (-RT X(Wbs) + R T.X(ea). )i 1• oo

(X2(W b R T. X(ea.). )i 1x'" = (-R. s )" )+ oo

(B9.3)

(B9.2)

(B3.1)

(DEFINITION)

(B3.2)

(MODEL DEFINITION)

(DEFINITION)

(B13.14, 15.1)

(BI5.2)

(B13.14)

(B9 .ii)

(B9.12)

(B15.1,9.1,9.8)

(B15.2,9.9,9.8)

(B15.3,9.10,9.8)

Trig Model for Feathering Factor, F s

Fs = (F-F o) Rfs (S)

F = F2
sq s

SF = sin Fs = Fs * (i - Fsq(l-Fs_20)/6)

CF = cos Fs = 1 - Fsq(l-Fs_12)/2

(DEFINITION)

(DEFINITION)

(MODEL APPROX.)

(MODEL APPROX)
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Table B.8.6 SHANK TO BLADE TRANSFORMATIONS (Subsystem 1.6 of Figure B.3)

= R. (Vas + b" + X(Was). b ) + Vaa (B7.1,2)V a

u s = V's + X(Ws - z). Vs + X(z). Vs (B6.4)

w - z = w . - z (DEFINITION)
S Sl

w" = W'. (DEFINITION)
S S1

V = v (DEFINITION)
as asi

w = w (DEFINITION)
as asi

Table B.8.7 DISTRIBUTED INERTIAL LOADS (Subsystem 1.7 of Figure B.3)

Umb r = u s + x'" + 2X(w s - z). b" + 2X(z). x" + X(w s). b

+ ( X(w s - z). X(Ws). + X(z). X(w s - z). )b + X2(z). x

(B15.4)

fmi = -Mb Umbr (B12.2)

Pmi = (fm T, mT) T (B6.5)

m. = 0 (ASSUMPTION)
1
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Table B.8.8 AERO GEOMETRY (Subsystem 1.8 of Figure B.3)

M 2 = Va2 Rvc (DEFINITION)

M3 = Va3 Rvc (DEFINITION)

2 2
M2 = M 2 + M3 (B7.3)

sin Ab = M3 / M (B7.4)

cos Ab = M2 / M (B7.4)

Table B.8.9 AERODYN_IIC COEFFICIENT TABLES (Subsystem 1.9 of Figure B.3)

Logical operations on sin Ah and cos Ah (select one) for table
look-up operand. Pointers to proper-tables are-also established by this

logic. The selected operand OA (either sin Ab or cos Ab) is used with M for
three bivariate look-ups.

Cfa 2 = Cfa 2 (OA, M)

Cfa 3 = Cfa 3 (0A, M)

Cma I = Cma I (0A, M)

Cfa I = Cma 2 = Cma 3 = 0

(B7.7)

(B7.8)

Table B.8.10 DISTRIBUTED AERO LOADS (Subsystem i.i0 of Figure B.3)

Qac = 1481 M2 Pr Cb (B7.5,6)

fma = Qac RT RI(Abl)" Cfa - fao (B7.9,12.3)

ma = Qac Cb Cma (B7.10)

T mT,T (B7.11)
Pma = (fma' a
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Table B.8.11 LOADSINTEGRANDASSEMBLER(Subsystem i.ii of Figure B.3)

gr' = Gp. (Pmi + Pma)
!

fr = Fp. fmb

!

m r = (Mp. + X(bp).) fmb

+ X(bp).(-Mb(e b" + X(z).(2 e_ + X(z). eb)))

+ X(x).(-M b X2(z). boo + fao )

fmb = fmi + fma

(B13.6)

(B13.8)

(B13.13,1,2)

(DEFINITION)

Table B.8.12 RADIAL INTEGRALS (Subsystem 1.12 of Figure B.3)

x= _/_0 x' dW

x" =_/_0 x'' dW

x'" = _/_0 x'" dW

!

gri = __f-R gr dS

Geometry

Modal

(Definitions)

(Definition)

fri = fr dS

_/--_ ! dSmri = m r

Gimbal Loads (Definitions)
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Table B.8.13

MODAL COORDINATE INTEGRATIONS (Subsystem 1.13 of Figure B.3)

Solve for every blade, i, i = 1,2,.-N b

gi = gri + (Zp Gzv. + Gv') qi + Zz(gb° + GZq" qi)

(save qi )

qsi = qi

qi = Kqq. qsi + (Kq v'+Zp Kqzv')qi + (Kqg'+ZP Kqzg')gi

q_ = KVV. qi + (Kvq-+Z p Kvzq')qsi + (Kvg.+Z p Kvzg')gi

q_" -- " E2" qi + gi

Expressions for the constants in Modal Coordinate integrations:

Given: ?o' Zo' Dr' KPZ' NIs' Gqd' Gq W = Po Zo

solve: Yd Zo Dt Sa = sin CA)
= P = NIS Po

A = PYd Ca = cos (A)

Unconstrained (NIS > 0)

Kqq = C a

Kq v = Sa / W

Kqg = (l'-Ca) / _

Kv q = -W

Kvg = Kqv

Ppz_ -_CZo _pz + P) / w2

Kqz v = Z o Ppzp CA C a - Sa)

cAsa+2ca-2)/w
= Zo PpZpKqzg

KvZ q = -Z o Ppzp

Kvzg = Kqz v

2=W2
Eq

constrained (NIS = 0)

Tq-- Gqd / _2

Kqq = exP(-Yd/(Tq Zo) )

Kqv= 0

Kqzv = 0

Kqg = (l.-Kqq) / _2m

Kv v = 0

= -l.ITq
Kvq

Kvg = l./(TqW2m )

Kvzg = 0

Kqzg = 0

Kvv = C a
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Table B.8.14 MULTIBLADEMODALCOMBINATIONS(Subsystem 1.14 of Figure B.3)

m

qs = (llNb) _i qi sin Ybi

qc = (I/Nb) _i qi cos Ybi

qo = (i/Nb) _i qi

qds = (1/Nb) li q[ sin Ybi

qdc = (1/Nb) _i qi cos Ybi

(B14.3)

(BI4.4)

(B14.5)

(B14.6)

(B14.7)

(BI4.8)

qm = (qT, qT, qT)T (B14.9)

T T TT

qmd = (qdo' qdc' qds ) (B14.10)

Table B.8.15 MULTIBLADE LOADS COMBINATIONS (Subsystem 1.15 of Figure B.3)

fgr = Zi R3(Ybi) fri

mgr = !i R3(Ybi) mri

(B14.12)

(B14.13)

Table B.8.16 GIMBAL LOADS SUMMATION (Subsystem 1.16 of Figure B.3)

f =f
g gr

m = m
g gr

+Am(FsqI.% + Am(Fsqd + fso

+ Am(Msq')" qm + Am(Msqd" )" qmd + I3" mso

where, A (A.). =
m

0

0

A 3

A 1 A2

A 2 -A 1

0 0

Fsq. = Fq. + Fzq. Zz

Fsq d. = Fqd. + Fzq d. Zp

fso = fz Zz + fo

(B13 .i0)

(B13.9)

(B13 .ll)

Msq. = Mq. + Mzq. Zz

Msq d. = Mqd. + Mzq d. Zp

=m Zz +mmso z o

(BI4.12)

(B14.13)

(B13.15)

(B13.16)

(BI3.17)
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Table B.8.17 GIMBALLOADSTRANSFORMATIONS(Subsystem1.17 of Figure B.3)

fc = R3 (Yc)" fg

mc = R3 (Yc) . mg

f = f
cu c

mcu = mc + X3(Zu)" fc

ftu = R2 (-Qg)" fcu

mtu = R2 (-Qg)- mcu

ft = ftu

mt = mtu + X3(-Zu)" ftu

fh = R3 (-Yt)" ft

mh = R3 (-Xt) • mt

EG = i_ mcu

Yt = Yc - Y

Table B.8.18 GIMBALSERVOINTEGRATOR(Subsystem1.18 of Figure B.3)

i = NM+ l, j = 2 * NM+I

Q_" = Kge Eg

Qsg -- Qg

Qg = GqqQsg+

Qg = Gvv Qg+

÷ Kgqc%i ÷ Kggs%j ÷ KgvcQmdi÷ Kgvs%_j

(Save Qg)

(Gqv+Z p Gqzv)Q _ +

(Gvq+Z p Gvzq)Qsg +

(Gqa+Z p Gqza)Q _"

(Gva+Zp Gvza)Q _"
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Presented in this Appendix is an analysis of the "gimbal kinematics",
and the the manner in which the blade root loads contribute to a "gimbal
error". The kinematics equations dependspecifically on the detailed design
of the gimbal which, of course, can take manyarrangements.

Two relatively commonsystems are analyzed below. These are the
teetering (with "flap-pitch coupling" and "undersling") and the focused
floating gimbal.

C.1. The Teetering System

Figure C.I depicts the classical teetering rotor system with flap-pitch

coupling (Yc) and undersling Zu. The figure also presents some of the
various axls systems used in the kinematic analysis. "Rotor" axes (r) are

shown in the conventional position. Rotor axes are fixed to the shaft, with

r3 coincident with the shaft centerline.

"Teetering" axes (t) are also fixed to the shaft, but have been rotated

by the angles Yc about t3, so that t2 is parallel to the teetering hinge.

"C" axes are fixed to the gimbal outer housing, as are the rotor

blades. When there is no gimbal deflection (i.e., Q_ = 0), C axes are

coincident with teetering axes, but as the gimbal move_, the C axes rotate

with respect to teetering axes, by the angle Q_. Note that, if there is

undersling, then C axes also translate with r_spect to teetering axes.

Figure C.2, used later in the analysis, presents a clearer view of the

relationship between teetering and C axes.

"Gimbal axes" (sub g) are fixed to the outer gimbal ring (blade-root

mounting ring), but are rotated the angle -Yc from C axes about g_. Hence
gimbal axes appear to the rotor blade analysis, exactly as rotor ax%s would

with no gimbal present.

To help further clarify the definitions of these various coordinate

systems, Table C.I summarizes the systems and presents abbreviations and

subscripts used throughout the subsequent kimematics analysis.

"Shank axes" (s) associate with each blade shank - the region of the

blade connected to the outer gimbal housing. For blade number i,

i=l,2,..N b, the shank axes are rotated Ybi about ___from gimbal axes. Theprojection of the blade reference line on the plane generally lies

along the negative sI axis.

C.I.I Motion Transformations

The reader is directed to Appendix A, which presents general procedures

for entity definitions and transformations. These standardized methods are

convenient for derivation of equations in a form suitable for direct

computer programming.

Figures C.I and C.2 have been used to derive the motion transformation

expressions of Table C.2 in accordance with the procedures of Appendix A.
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Blade #2

Teetering
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Gimbal

Blade #I

tI

r2

C
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/
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u
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Figure C.I. Conventional Teetering Rotor Hub

Figure C.2.
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Coordinates and Notations for Motion Summation
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C.I.2 Loads Transformations - Gimbal Errors

Loads produced by all blades in the rotor are applied to the outer
gimbal ring at the blade shanks. These loads sum to resultant force and
momentcolumns resolved to gimbal axes. The loads transformation equations
convert the gimbal loads resolved to hub axes, representing the forces and
moments the rotor applies to its supports. Table C.3 presents the loads
transformations. Note that a "gimbal error" load is also provided.

The presence of a gimbal in the system essentially introduces into the
dynamics equations a requirement that certain moments acquire specific
attributes. For example, a simple free teetering system requires that the
moment about the teetering hinge vanishes. If the hinge motion is
constrained, the moment remains zero between stops and then acquires the
attribute of a very stiff spring upon contacting a stop. Other attributes
can also be demandedby the design of the gimbal. An example is a system
with a spring installed about a gimbal axis.

The loads transformation expressions of Table C.3 produce the moment
about the teetering axis as a gimbal error function: An external
calculation (the servo) converts this error into a gimbal acceleration to
produce the desired overall system behaviour.

C.2 The Floating Gimbal

As described previously, the detailed design characteristics of the

gimbal system must usually be considered in the dynamic math model of such

a system. The teetering gimbai was analyzed in Section C.I. The same basic

expressions derived for the teetering system are easily expanded for use in

analyzing a hypothetical "floating gimbal" with two degrees of freedom.

Figure C.3 shows the floating system with a "focal point" not at the

center of the rotor hub. As such, this system is similar to the teetering

system, except that it frees the moments in the ball joint in two

directions and, hence, has two-element gimba! error and degree of freedom

columns.

Figure C.3 - Sketch of Floating Gimbal System
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The math model of the floating gimbal is very similar to that of the
teetering system. The gimbal degree of freedom variables , Q_, Q[, and QI"
now becomevector columns with two non-zero elements, representing motions
about both the t. and t_ axes. The transformation array R_, must be
expanded to consider an l-_xis rotation also. The new transformation matrix
R]_, can be used in place "of R2 in the previous equations. If the first
eI_ment in the q column, Q-I' represents the 1-rotation and Qg2 the
2-rotation, the ne_ transforma_on array is written:

RI2. = RI(Qgl). R2(Qg2).

With these definitions, the teetering matrix equations can be applied
directly to the floating system.

The gimbal loads expressions can also be applied; in this case the
two-element gimbal error column is composed of both 1 and 2- axis
componentsof the momentat the ball joint.
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Table C.I COORDINATESYSTEMSUSEDIN GIMBALSYSTEMANALYSIS

No. Name Abbreviation Axis Fixed To
Label

1 Hub Axes HAX h
2 Rotor Axes RAX r
3 Gimbal Axes GAX g
4 ShankAxes SAX s

5 Teetering Axes TAX t
6 C Axes CAX c

Nonrotating Frame
Rotating Shaft
Outer Gimbal Ring
Outer Gimbal Ring
(s3 coincident with g3)

Rotating Shaft
Outer Gimbal Ring

The following axes systems account for the rotor undersling.

7 TU Axes TUAX tu
8 CUAxes CUAX cu

HAM . • • Origin and hq coincident with corresponding RAX entities, but HAX
do not spin With the rotor. HAX are rotated the angle Y from RAX

about h3, where Y = Z T and Z is the rotor spin rate.

RAX ... Origin at hub center when gimbal is undeflected. Negative r. axis
lies under blade number 1 projection on the shaft normal _lane.

GAX ... Origin and gq axis coincident with corresponding CAX entities
Rotated an angle Y from CAX about the Cq gq axis. As defined, GAX

are coincident wit_RAX when gimbal is un_efIected

SAX ... GAX rotated Y, about gq for each blade, i, to become shank axes
for blade i. S_nk axes for blade number 1 are GAX.

TAX ... Origin and t coincident with r3 and RAX origin. Rotated the angle

hCng(about, t3_ from RAX so thad t2 is parallel to the teetering

CAX ... Coincident with TAX when gimbal is undeflected.
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Table C.2 HUBTOSHANKMOTIONTRANSFORMATIONS

Inertial Velocity Operation

vt = R3 (Yt)- vh

wt = R3 (Yt). wh + z

Vtu = vt - X3 (Zu)- wt

Wtu = wt

Vcu = R2 (Qg)- Vtu

Wcu = R 2 (Qg). Wtu + I2.Q _

HAX TO TAX

TAX TO TUAX

TUAX TO CUAX

vc = Vcu + X3 (Zu)- (Wcu-Z)

w = w
c cu

Vg = R 3 (-Yc). vc

Wg = R 3 (-Yc). wc

Vsi = R 3 (-Ybi). Vg

Wsi = R3 (-Ybi). Wg

CUAX TO CAX

CAX TO GAX

GAX TO SAX

Rotor Speed Variables:

z = (0, 0, -Z) T ,- z" = (0, 0, -Z d)

T
Z=Z

o
* Z

P
+ Z

o

_ometry:

Y=Y-Y;
t c Yi = Y + Ybi ;

v . =y +v
-cDi c -bi

Control -

F i = C 1 - C 2 cos Yi - C3 sin Yi

C-7



Table C.2 (continued)

Aerodynamic _Velocity

Vat = R 3 (Yt)" Yah

Wat = R3 (yt). Wah + z

Vat u = Vat - X3 (Zu)" War

Wat u = Wat

Vac u = R2 (Qg)" Vat u

Wac u = R 2 (Qg)" Wat u + I2.Qg

Vac = Vac u + X 3 (Zu)" Wac u

Wac Wacu

rag = R3 (-Yc)" Vac

Wag R 3 (-Yc)- Wac

Vas i = R 3 (-Ybi)" rag

Was i = R 3 (-Ybi)- Wag

Time Differentiation - Inertial velocity

Vt = R3 (yt) " (vh - XCz). Vh)

wt = R3 (yt) " (Wh - X(Z). w h) + Z"

Vtu= x3 (z#

WtU = Wt

• = R2 (Qg)" (Vtu-X2 (Qg)" Vtu)Vcu

w " - X2 (Qg)" Wtu) + I2"Qg"
w " = R2 (Qg). ( tucu

• = v " + X3 (Zu) wvc cu " cu

w C WclI

= c- c)Vc

w_ = R3 C-Yc)•we

VS _ = R3 (-Ybi). Vg

• = (-Ybi)- gWs i R3 W
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Operation

HAX TO TAX

TAX TO TUAX

TUAX TO CUAX

CUAX TO CAX

CAX TO GAX

GAX TO SAX

ope rat ion

HAX TO TAX

TAX TO TUAX

TUAX TO CUAX

CUAX TO CAX

CAX TO GAX

GAX TO SAX



Table C.3 GIMBALLOADSTRANSFORMATIONS

fc = R3 (Yc)" fg

mc = R3 (Yc). mg
f = f
cu c

= m + X3(Zu). fmcu c c

ftu = R2 (-Qg)" fcu

mtu = R2 (-Qg). mcu

ft = ftu

mt = mtu + X3(-Zu)" ftu

fh = R3 (-Yt)" ft

mh = R 3 (-Yt) • mt

EG = i_ mcu

Yt = Yc - Y
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APPENDIX D

GIMBAL SUBSYSTEM DYNAMICS

The Appendix contains the "Test and Verification Report: A Gimbal Subsys-

tem for the Wind Energy System Time-Domain (WEST) Analyzer" by John A. Hoffman

(PPI-1640-3; December 1979). Analysis included herein form the bases for the

gimbal servo algorithms presented elsewhere in this report for use in solving

the aeroelastic rotor math models including Eimballed articulation.
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1.0 INTRODUCTION

This report documents the experimental implementation of a

rotor gimbal subsystem into the Wind Energy System Time-Domain (WEST)

analyzer. The WEST 2 unit was used in "the implementation.

References I and 2 document the math models and hybrid

computer implementation diagrams for the WEST 1 and WEST 2 simulator units.

The original WEST math models embraced articulated and hingeless rotor

blade retention systems; gimballed rotors (teetering or floating) were

not addressed by the original simulators.

Subsequent to the design of the initial WEST concepts,

teetering emerged as a viable design alternative in U.S. wind energy systems.

Thus, an additional subsystem was designed for the _ST units that wo'_id

allow them to analyze teetering rotors. Reference 2 presents the math

model derivations _nd hybrid program diagram.s for the teetering s_osystem.

The teetering subsystem for the full analysis was simplified

to an "abbreviated" system, so that it would fit on a single General Pu._pose

Electronic System _GI_JRS). The G_7/RS implementation had the purpose of

proving the concept of the gimbal subsystem, prior tc its being hardwired

in its complete form within the WEST u/qits ther.se!ves.

This report deals with this abbreviated G_JRS implementation,

which is valid if the rotor shaft remains fixed in space. _ Aithou@h

abbreviated, the system proves the feasibility of the concept so that the

system can be hardwired with confidence, without further feasibility

testing.

Although considerable difficulty was encountered with the

dynamic stability of the gimbal/WEST simulation, techniques were developed

which enabled the system to perform very well.

The full subsystem allows shaft motions.
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The remainder of this report is organized as follows:

Section 2.0 presents a description of the basic gimbal

subsystem, drawing on the detailed developments in R_ference 2.

Section 3.0 presents performance results, in the form of

oscilloscope photographs, which show correct operation of the gimbal

subsystem in a closed-loop simulation with WEST 2.

In Section 4.0, the technical problems encountered in

implementing the gimbal subsystem and their solutions are presented.

Section 5.0 presents conclusions and recommendations for the

future of the gimbal subsystem in the WEST units.
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2.0 DESCRIPTION OF THE GIMBAL SUBSYSTEM FOR WEST

Reference 2 presents the complete derivation of the equations

for the WEST gimbal subsystem and hybrid computer implementation diagrams

for the subsystem. The gimbal subsystem is essentially a "drop-in" package

between the existing rotor analysis and the shaft support system math models.

Configured in this way, only minimal modification of existing hybrid systems

(for the wind turbine and shaft supports) is required.

Figure 2.1 presents the fundamental technique inc:_!_porated

in the gimbal subsystem. The existing rotor analysis calculates the loads

that blades place on the rotor hub. Proper resolution of these produces

the total moment about the teetering hinge, which should be zero because

of the hinge. This moment is called the "gimbal error," _.

Hubi Mot ions__

!

WEST

ROTOR

SYSTEM

Hub Loads

CALCULATION IOF HL_

MOTIONS

L

1 1

S .
7

V
CALCULATION i

OF GIMBAL I
EF_ROR

HIGH-GAIN_
TRANSFER

FUNCTION

Shaft Mot ions

(From Nonrotor L__
Structure (NRS)

Subsystems

Gimbal Sub system

Figure 2.1 - Basic Configuration of WEST Gimbal Subsystem
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The gimbal acceleration, 7", is calculated by multiplying the

error by an arbitrarily large gain so that for practical 7" values, ¢ -_ 0

as the gain becomes higher. 7 and 7 are produced by integrating "7, and

these three gimbal motion entities are combined with motions of the shaft

to produce rotor hub motions. Rotor hub motions feed back to the rotor

analysis, closing the loop.

Figure 2.2 presents a simple model of the rotor blades,

assumed perfectly rigid for the example. Figure 2.3 shows a more

quantitative version of Figure 2.1, using the simple rigid rotor representa-

tion. As is easily perceived from Figure 2.3, ¢ _ 0 as k __oo, so that the

system solves the equation

f = I'7 + d7 + k7

as the loop gain, k, is increased.

X

f

Figure 2.2 - Simple Quantitative Model

For Windturbine Rotor
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SIMPLEROTORMODEL

Other Force

Contributions [

I

I

f Id__ l
i

:_I___ _

_mmmi_mQ_

A

v

Figure 2.3 - Gimbal Analysis With Simplified
Rigid Rotor Model

The final implementation diagrams for the abbreviated gimbal

system are presented in Appendix A. These diagrams embrace the concept of

Figure 2.1, using the detailed transformation e:cpressions of Reference 2.
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3.0 PERFORMANCEOFTHEABBREVIATEDGIMBALSUBSYSTEM
_s

After some modification (described in Section 4.0), but

with the basic concept intact, the abbreviated gimbal subsystem was found

to perform wellwith the WEST 2 rotor and NRS systems. Figure Series 3

presents oscilloscope photographs which document the performance of the

full coupled system. These results are discussed below.

"Nominal conditions" have been used in Reference 3 to correlate

WEST with other analyses. These conditions include a windspeed of 27 mph,

40 rpm rotor speed, lO0 percent shadow retardation through an 18-degree

sector, and 20 percent windshear profile. Normalizing parameters on the

traces are

R = Rotor Radius = 62.5 ft

W = Normalizing Thrust = 5,000 lb

Figures 3.1 and 3.2 sho,_ nominal operating conditions with

gimbal on and off. Note the reduction of the gimbal error of Figure 3.2

(gimbal off) when compared to the trace of Figure 3.1. The high frequency

"serpentine"* mode is the predominant error _unction. Figure 3.1 reveals

that this lightly damped mode has a frequency of about 16 hz. This mode

is excited twice per rev by the shadow effect, which prcduces an impulsive

forcing function on the system. The serpentine ringing does not appear if

the shadow effect is off, and only windshear (which is a pure 1P signal

with no impulse) turned on.

Figures 3.3 and 3.4 reveal the performance of the gimbal system

in reducing 1P gimbal errors. Figure 5-3 shows a case with extreme windshear,

producing a 1P gimbal error of about 7v peak when the gimbal system is off.

*The serpentine mode is the high frequency mode where the gimbal moves in one

direction, and the blade fla_wise bending modes move in oppositedirections.

D-7



OmGl L PAa; .-
OF POeR QUALITY

sin_ 2
__

ID¢IwR

(2v/cm __

1007 0 --
(2v/em)

Figure 3.1 - Nominal Case - Gimba! Subsystem On
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/
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I007
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Figure 5.2 - Nominal Case - Gimbal Subsystem Off

IRKP.
Figures 3-1 and 3.2 iNO.

GIMBAL PERFORMANCE EXAMINATIONS -

NOMINAL CONDITIONS
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ORIGINAL PAGE |$
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Figure 3-3 - No Shadow, No Gi_oa!, Extreme Windshear Case

sin W2
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Figure 3.4 - Same As Figure 3-3 Except Gimbal On

t_EP.
Figures 3.3 and 3.4 iNO.

GIMBAL PERFORMANCE EXAMI_|ATIONS -

i PER REV EXCITATION
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With the gimbal system turned on, the error is reduced substantially, as

shownby Figure 3.4. A smaller scale on error revealed that the 1P gimbal

error is reduced to about 50 mv peak. Hence, the closed-loop gimbal sub-

system reduces gimbal errors by over a factor of lO00, or 60 db.

Figures 3-5 and 3.6 reveal the benefits of the gimbal in

reducing blade root flap bending moments. The peak to peak momentwith the

gimbal is about 3v. Without the gimbal, the momentis about 3.8v, so the

gimbal reduces the momentby about 27 percent.

Studies of Reference 4 indicated a potential benefit cf reducing

blade root out-of-plane bending momentsby 112, using gimballing. This

benefit is realized only for bending normal to the plane of rotation. The

momentsin Figures 3-5 and 3.6 are measured_arallel to the blade chord,

which is situated at an angle of about 30 degrees with respect to the normal

plane. Hence, half of the 1F gravity momentis supported as a 1P flapwise

bending momentat this station, and this momentis not relieved by gimballing.

The gravity momentin the MOD-0is about 45,000 ib-ft peak, so

its contribution to Figure 3-5 is roughly 2(45,000)(.5)(10)/62.5/5000 =

l.&4 v p to p. Removingthis IP componentin the flap momentwould produce
a 2.36 v pp value with no gimcal, and about 1.56 value with the gi_Da!. The

loads reduction when vi_ed in this m_nr,er approaches 34 percent, which is

closer than the theoretically maximumbenefit of 50 percent, discussed in
Reference 4.

Figures 3.7 and 3.8 show, as expected, that gimballing does not

reduce the edgewise bending moments,although the d_a_Zc characteristics

of these momentsare changed by the presence of teetering.
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Figures 3.7 and 3-8 'IaEP'No.
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4.0 TECHNICAL PROBLEMS ENCOUNTERED IN

IMPLEMENTING THE GIMBAL MODEL

When the original system presented in Reference 2 was turned

on, it burst into full oscillation. Suspecting the high-gain loop closed

around _ and _, a Bode plot of the actual transfer function -¢/7_ was

prepared and included herein as Figure 4.1. The extreme phase shifts in

the vicinity of 2hz, and at frequencies above 30 hz, reveal the sources of

instability. _

Neglecting the phenomenon around 2hz for a moment, one sees

that a pure integrator feedback loop around the gimbal error function would

be stable, if the loop gain were i0 db at 35 hz, which translates to zero db

at 110.6 hz. The loop gain would then be about 44 db at .67 hz, the IP

frequency. One could expect a reduction in _he IP gimbal error of about

1'165, or down to an error of about 1/2 percent. This might be considered

a maximum gimbal error reduction.

The phase lag and associated amplitude roll-off around 35 hz

is because of the sample data process - the blade sweep calculations in

the _ST rotor simulation. This roll-off point could be moved to a higher

frequency by decreasir_ the sweep period from lO ms to 1 ms in the W_EST

rotor. This would enable a potential gain increase of 20 db in the gimbal

error loop, reducing the error to .05 percent, if this additional reduction

is deemed necessary at any future time.

Notwithstanding the loop gain limit because of rotor sweep

timing, the integrator feedback produces a 90 degree phase shift at all

frequencies, driving the mode around 2 hz unstable at all gains above O db.

With this phenomenon, the entire gimbal concept, as originally conceived,

is obviously invalid.

To understand the mechanism associated with this phase dip,

consider the simplified model of Figure 4.2. Depicted is one blade deflected
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in its first flap mode, with blade element mass dm, and associated differential

forces.

Hingepoint

Moment on

H_o Applied

By Blade

7

S

Blade

Figure 4.2 - Simple Blade Model

From inspection of Figure 4.2, the moment applied to the hub by the blade

(blade number l) is

M1 = __" _ j(_'= + _2_I) (1)

and, analogously, by blade number 2

where the constant integrals are given by

I _= fm s2 ds

 "fm= s zI ds

D-15



and the modal transformation is defined

Z = ZI _ ,

The blade modal equations are

(6)

(7)

where the generalized mass is defined

fmMg _ zI ds (8)

The gimbal error is given by the expression

¢ = M1 - M2 (9)

The equations cam. be combined to yield the following transfer function

E

(lo)

where

k = - 2(z - ?_/_/Mg) (ll)

_o
n

A
= (D _/-k/2/(Z-_/Mg)

The Mod-O has the following parametric values

M = 2648
g

= 11.43-_1.819 hz
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I = 44,0OO

J = -10, 094

p a: _/n = 2.728

n = 4.19

So

= 4.82 hz
n

Function lO has the characteristic depicted by Figure 4.1.

If aerodynamics had been included in the simplified model, then damping terms

would be included in the transfer function. This more general function, with

the exact characteristics of Figure 4.1, has the form:

¢ = k +2_n _nn +l

_-. (13)

+ 2g + 1

Figure 4. 3 is a block diagram of the system that produces the

characteristic of Figure 4.1. Note that the presence of_ = B1 - B2 in the

system is responsible for the dy?_mics. If2_B = O, the transfer function

would be a constant and easily controlled with pure integrator feedback.

Figure 4. 3 suggests that the transfer function can be modified

by inserting_ am.d/or2_8 energy into the calculation of ¢, phased to cancel

the loops shown in Figure 4. 3 . Figure 4.4 shows the qualitative effects of

doing this on the BODE plots. Note that both effects reduce the phase dip,

improving the system phase margin.
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Figure 4. 3 - Basic Gimbal Error Transfer Function

Showing Influence of Blade Flapping Mode

The WEST rotor model has both 2_ and 2_B signals available,

using notation _xr and Bxr in the program. These signals were routed to the

GPURS gimbal implementation and inserted into the c calculation.

Both feedbacks enhanced the stability, but the _6 was found

to be superior. It did not reduce the gimbal error suppression, but did

stabilize the system.

As mentioned previously, a 1P gi_oal error suppression of

over lOO0 (over 60 db) was accomplished in the hardw_.re, after the 2_B

stabilization loop was closed - this performance exceeds the 40 db maximum

reduction predicted from analysis of Figure 4.1.

Appendix A.

The final gimbal implementation diagrams are presented in
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A

Nominal System

With AB
Compensation

Figure 5.ha) - _6 Reduces Numerator Resonance Frequency,

Improving Phase Margin

o

o

Nominal System

With_

Compensation

Figure 4.4b) - _ Increases Nt_nerator Damping Coefficient,

Flattening Second Part of Dipole and Improving

Phase Margin
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5.0 CONCLUSIONSANDRECCM_ENDAT!ONS

The abbreviated gimbal subsystemof Reference I was implemented

using GPURS interfaced with WEST 2 and tested. After correcting the closed-loop

stability problems that emerged, the system was tested and verified as performing

well.

The next step would be to hardwire and test the full gimbal

subsystem model into the WEST 2 NRS. The system should have an activate:'

inactivate control so that WEST 2 will then possess the ability to ama!yze

either teetering or hingeless wind turbine systems.

*The full system allows for shaft motion.
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APPENDIXE

ALGEBRAICLOOPPROBLEMIN THEPOWERTRAINMODEL

This Appendix presents an example derivation of a single
degree-of-freedom power train mathematical model. A significant origin
of numerical instability is identified herein, and the reformulation
methods needed to correct the problem are discussed. These same
reformulation procedures are used elsewhere in this report in
derivations of more general power train mathematical models.
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2.3 Power Tr_in/Powmr Si_k Model

Figure 2-3 shows the single dof power train model, in

conjunction with an effective rotor inertia JR" _ is the rotor torque

produced by the WEST rotor model. _ and _ are rotor speed and acceleration

variables, which must be produced by the power train model and applied to

the rotor model as inputs. 7p is the torque applied to the power train

by friction and the power-absorbing elements (i.e., the alternator) of the

wind energy system. Note that the power train subsystem has the simple

equat ion

7p

Jp

(2-6)

Figure 2-3 - Power Train Single DOF Model
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Figure 2-4 is a block diagram of the rotor/power train

system, showing the required _ and _ feedbacks.

EXTERNALCOMMANDS

CONTROL

L ....

ROTOR SYSTEM

TORQUE

+

7p

+ Jp

POWER

ABSORBING

SUBSYSTEMS

I

S

n

Figure 2-4 - Generic Power Train Model

(1 DOF) With Rotor Ccuplings
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On inspection of Figure 2-h, one notes the "algebraic" loop

from _ through JR' NH' I/Jp and back to _ again. Such loops can produce
high frequency instabilities in multiplexed systems such as the WESTrotor

model; rearranging the configuration into a form depicted by Figure 2-5

usually eliminates the problem, however, by effectively reducing the loop

gain from i/Jp to i/(Jp + JR). A high frequency low-pass filter with time
constant x has also been added, to removehigh frequency energy from the

loop and further enhance stability, x is chosen to be small enough (e.g.,

2-!0 ms), so that the filter's presence does not aberrat__ the accuracy

of the calcu!ation in the frequency band of interest (usua_._lybelow !0 Hz).

COI_ROL'
I

ROTOR SYSTEM

SU_CDRY

TORQUE

PRODUCERS

÷

I
!
I

EXTERNAL COMMAND

POWER

ABSORBING

SUBSYSTEMS

A

Figure 2-5 - Alternative Power Train Implementation
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The system of Figure 2-5 is shownin its detailed implementation

form in Section 4. The power absorbing equation has been implemented in
the form

Tp = kd_ + _ f(_ - _n)dt + 7p ° (2-7)

The term with the kd factor is a damping term, which can also be used to

simulate alternators whose torques are related to speed, kp is a "phase"

gain, which simulates alternators that produce torque in proportion to a

phase difference between the angle f_dt and some network phase f_ndt.

7po, of course, is a steady bias torque associated with some nominal power

setting
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APPENDIX F

VARIABLES AND CONSTANTS: DATA BASE REPRESENTATION

Presented in this Appendix are the definitions, including

normalization and scale factors, of all the variables and constants

used in the wind turbine simulation model.

Page
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Rotor .. . F-2
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

VARIABLESAPPEARINGIN THESYSTEMEQUATIONS

JUNE1985

I. THESIMULATIONMODELIS SETUPFORTHEFOLLOWINGMAXIMUMS:

BLADES .... (NB) 2

CONTROLSYSTEMSTATEVECTORELEMENTS.... (NC) 3
ELASTICMODESPERBLADE................. (NM) 3
GIMBALDEGREESOFFREEDOM............... (NG) I
POWERTRAINDEGREESOFFREEDOM.......... (NP) 2

2. THEFOLLOWINGCONSTANTSAREUSEDFORNORMALIZATIONANDSCALING:

C34
FR
MR
NB
OR
R
RAR
VR
XAR
Z0

BLADECHORDAT 3/4 RADIUS(FEET)
REFERENCEFORCE(LBS)
REFERENCEMOMENT-- R*FR(FT-LBS)
NUMBEROFBLADES
REFERENCEROTATIONALVELOCITYffi Z0
ROTORRADIUS(FEET)
REFERENCEROTATIONALACCELERATIONffi ZO**2
REFERENCETRANSLATIONALVELOCITY= R*ZO
REFERENCETRANSLATIONALACCELERATION= R'Z0**2
NOMINALROTORSPINRATE(RAD/SEC)

ROTORMODEL• i.I THROUGH1.17

B00(1)+2 : I.,5.,5. : I/R+2
QUIESCENTBLADESHAPEFUNCTIONS:B,B:S,R:S

B(1)+2 : 1.,5.,5. : I./R+2
POSITIONOFBAXWRTSAX. S:B,B:S,R:S.

BD(1)+2 : 5.,2.5,2.5 : I./VR+2
VELOCITYOFBAXWRTSAX. S:B,B:S,R:S

BDD(1)+2: 10.+2 : I./XAR+2
ACCELERATIONOFBAXWRTSAX. S:B,B:S,R:S

BF(1)+2 : 5.+2 : I./R+2
TRANSLATIONALPERTURBATIONOFBRLDUETOFEATHERINGT:XP,S:B,B:S,R:S.

BP(1)+2 : I0.,5.,5. : I./R+2
PERTURBATIONOFBRLFROMQUIESCENTPOSITION,BPffiB-B00.

CAB: I. : I.
COSINEOFBLADESECTIONANGLEOFATTACK(WRTCHORDLINE)

CB : .5 : I./C34
LOCALBLADECHORD,FT.
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CFA2 : .5 : I.

BLADE SECTION DRAG COEFFICIENT. (USED IN AERO PACKAGE)

CFA3 : .5 : I.

BLADE SECTION LIFT COEFFICIENT.(USED IN AERO PACKAGE)

CFS : I. : I.

COS(FS); FS = BLADE FEATHERING ANGLE.

CMA : I0. : I.

BLADE SECTION MOMENT COEFFICIENT. (USED IN AERO PACKAGE)

CY : I. : i.

COS(Y); Y =. BLADE # 1 AZIMUTHAL ANGLE.

CYBI : I. : i.

COS(YBI); YBI = ANGLE BETWEEN BLADE # 1 AND BLADE # I.

CYBION : i. : I.

CYBI/NB

CYI : I. : I.

COS(Y+YBI); (Y+YBI) = BLADE # I AZIMUTHAL ANGLE.

DA(1)I+2,DA(1)2+2,DA(1)3+2 : i.+8 : 1.+8

ROTATIONAL MODESHAPE MATRIX - REPEATS FOR EVERY RADIAL POSITION, J.

DB(1)I+2,DB(1)2+2,DB(1)3+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+i : I./R+8

TRANSLATIONAL MODESHAPE MATRIX - REPEATS FOR EVERY RADIAL POSITION, J.

DRAG : .25 : NB*R/FR

AERODYNAMIC DRAG MAGNITUDE.

DS : I0. : I./R

BLADE SEGMENT LENGTHS USED IN RADIAL SUMMATIONS

EA(1)+2 : 2.+2 : I.+2

ROTATIONAL BRL MOVEMENT DUE TO BLADE MODES - EULER ANGLES

EB(1)+2 : I0.,5.,5. : I./R+2

TRANSLATIONAL BRL MOVEMENT DUE TO BLADE MODES.

EDA(1)+2 : I.+2 : I./OR+2

TIME DERIVATIVE OF EA

EDB(1)+2 : 5.,2.5,2.5 : I./VR+2

TIME DERIVATIVE OF EB.

EDDA(1)+2 : .2+2 : I./RAR+2

TIME DERIVATIVE OF EDA

EDDB(1)+2 : I.,.5,.5 : I./XAR+2

DOUBLE TIME DERIVATIVE OF EB.

EGI : .25 : 1./MR
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GIMBALERRORFUNCTION

F : .5 : I.
BLADEFEATHERINGCONTROLANGLE,RAD.

FA0(1)+2 : .5,.25,.i : NB*R/FR+2
QUIESCENTDISTRIBUTEDAEROLOADINGFORCE,LB/FT. R:S.

FABC(2)+I : .5,.2 : NB*R/FR+I
AERODISTRIBUTEDFORCECOLUMN,R:BAX.

FBLD(1)+2: I.,I.,.I : NB/FR+2
BLADE# I ROOTFORCES,RESOLVEDIN SHANKAXES

FG(1)+2 : i.,I.,.I : I./FR+2
FORCESAPPLIEDBY ALL BLADESTOGIMBALRING. R:G.

FGR(1)+2: I.,I.,.I : I./FR+2
FORCESSUMMEDFORALL BLADES,RESOLVEDTOGAX.

FH(1)+2 : I.,I.,.2 : I./FR+2
FORCESAPPLIEDTO SUPPORTSBY ROTOR,RESOLVEDTOHAX.

FMA(1)+2: .5,.25,.I : NB*R/FR+2
MODIFIEDDISTRIBUTEDAEROFORCECOLUMN

FMB(1)+2: .5,.25,.I : NB*R/FR+2
FMA+FMI.

FMI(1)+2 : .5,.25,.I : NB*R/FR+2
}_DIFIED DISTRIBUTEDINERTIALFORCECOLUMN

FP(1)I+2,FP(1)2+2,FP(1)3+2 : .2+2,.4+2,1.,i.,.5 : I.+8
SHANKFORCEINTEGRANDPREMULTIPLIERTENSOR

FRI(1)+2 : i.,i.,.I : NB/FR+2
BLADEROOTFORCESAPPLIEDTOGIMBALRINGFORBLADENO. I. R:S.

FS : .5 : i.
F-F0 (FEATHERINGANGLE)

FS01,FS02,FS03: .I,i.,.i : I./FR+2
BLADEROOTFORCESIN SHANKFORCEFORMULA(QUIESCENTSTATE).

FSQI(1)+2,FSQ2(1)+2,FSQ3(1)+2: .5+2,.5,.125+I,.05+2 : I./FR+8
OPERATORIN SHANKFORCEFORMULA.

FSQDI(1)+2,FSQD2(1)+2,FSQD3(1)+2: I.+2,1.+2,.i+2 : OR/FR+8
OPERATORIN SHANKFORCEFORMULA.

GI(1)+2 : .25+2 : I./RAR+2
GENERALIZEDFORCINGFUNCTIONCOLUMNFORIth BLADE.

GP(1)I+2,GP(1)2+2,GP(1)3+2 : .05+2,.I+2,.25+2 : FR/NB*RAR+8
GENERALIZEDFORCINGFUNCTIONINTEGRANDPREMULTIPLIERTENSOR.
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GP(1)4+2 : I. ,I.,.8 : FR/NB*RAR+I,FR*C34/NB*R*RAR

GENERALIZED FORCING FUNCTION INTEGRAND PREMULTIPLIER TENSOR.

GRI(1)+2 : .25+2 : I./RAR+2

GENERALIZED FORCING FUNCTION OVER GENERALIZED MASS-ROTOR BLADE MODES.

IFR(1)+2 : .i,.I,.I : N3*R/FR+2

INTEGRAND FUNCTIONS-BLADE ROOT(GIMBAL RING) LOADS. R : R.

IGR(1)+2 : .025+2 : R/RAR+2

INTEGRANDS - BLADE GENERALIZED FORCING FUNCTION RADIAL INTEGRATION.

IMR(1)+2 : .i,.25,.25 : NB/FR+2

INTEGRAND FUNCTIONS-BLADE ROOT(GIMBAL RING) LOADS. R:R.

IX(1)+2 : 4.,8.+1 : I.+2

INTEGRAND FOR X FUNCTION.

IXD(1)+2 : 2.,I.,I. : l./Z0+2

INTEGRAND FOR XD FUNCTION

IXDD(1)+2 : .5,1.,I. : I./RAR+2

INTEGRAND FOR XDD FUNCTION.

LIFT : .I : NB*R/FR

AERODYNAMIC LIFT MAGNITUDE.

M : 2. : I.

BLADE SECTION MACH NUMBER (USED IN AERO PACKAGE).

M(1)+2 : 5.,2.,5. : 1.+2

MACH NUMBER COMPONENTS RESOLVED TO BAX.

MB : .025 : NB*VR*VR/FR

DISTRIBUTED BLADE MASS, SLUGS/FT.

MBLD(1)+2 : .25,.25,1. : NB/MR+2

BLADE # 1 ROOT MOMENTS, RESOLVED IN SHANK AXES

MG(1)+2 : .25,.25,1. : I./MR+2

MOMENTS APPLIED BY ALL BLADES TO GIMBAL RING. R:G.

MGR(1)+2 : .25,.25,1. : 1./MR+2

MOMENTS SUMMED FOR ALL BLADES, RESOLVED TO GAX.

MH(1)+2 : .25,.25,1. : 1./MR+2

MOMENTS APPLIED TO SUPPORTS BY ROTOR, RESOLVED TO HA/(.

MP(1)I+2,MP(1)2+2,MP(1)3+2 : .2,.5,.5,.4,1.+I,I.,I.25,2.5 : I./R+8

SHANK MOMENT INTEGRAND PREMULTIPLIER TENSOR.

MRI(1)+2 : .25,.25,1. : NB/MR+2

BLADE ROOT MOMENTS APPLIED TO GIMBAL RING FOR BLADE NO. I. R:S.

F-5



MS01,MS02,MS03: .25,.25,1. : 1./MR+2
BLADEROOTMOMENTSIN SHANKMOMENTFORMULA(QUIESCENTSTATE).

MSQ: I. : I.
MAC}{NUMBER,M, SQUARED(USEDIN AEROPACKAGE).

MSQI(1)+2,MSQ2(1)+2,MSQ3(1)+2: .125+2,.125+2,.5,.25+I : 1./MR+8
OPERATORIN SHANKFORCEFORMULA

MSQDI(1)+2,MSQD2(1)+2,MSQD3(1)+2: .25+2,.25+2,1.+2 : OR/MR+8
OPERATORIN SHANKFORCEFORMULA

Q0(1)+2 : 2.+2 : 1.+2

STEADY COMPONENT OF MULTIBLADE MODAL COORDINATES

QAC : .0625 : NB*R/FR

AERODYNAMIC PRESSURE TIMES LOCAL BLADE CHORD.

QC(1)+2 : 2.+2 : I.+2

COSINE COMPONENT OF MULTIBLADE MODAL COORDINATES

QD0(1)+2 : I.+2 : 1./OR+2

STEADY COMPONENT OF MULTIBLADE MODAL VELOCITY

QDC(1)+2 : 1.+2 : 1./OR+2

COSINE COMPONENT OF MULTIBLADE MODAL VELOCITY

QDDGI : 5. : I./RAR

DOUBLE TIME DERIVATIVE OF GIMBAL DEFLECTION ANGLE.

QDDI(1)+2 : .2+2 : I./RAR+2

DOUBLE TIME DERIVATIVE OF BLADE I MODAL COORDINATES.

QDGI : 5. : 1./OR

TIME DERIVATIVE OF GIMBAL DEFLECTION ANGLE.

QDI(1)+2 : I.+2 : 1./OR+2

TIME DERIVATIVES OF BLADE I MODAL COORDINATES.

QDS(1)+2 : i.+2 : 1./OR+2
SINE COMPOneNT OF MULTIBLADE MODAL VELOCITY

QGI : 5. : I.

GIMBAL DEFLECTION ANGLE

QI(1)+2 : 2.+2 : I.+2

BLADE MODAL COORDINATES FOR BLADE NO. I.

Qs(1)+2 : 2.+2 : I./NB+2

SINE COMPONENT OF MULTIBLADE MODAL COORDINATES

QSGI : 5. : I.

SAVE GIMBAL ANGLE

RO(1)I+2,R0(1)2+2,R0(1)3+2 : I.,2.+1,2.,.5,1., 2.,i.,.5 : 1.+8
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ROTATIONMATRIX- SAXTOBAX CONTROL POSITION.

ROO(1)I+2,RO0(1)2+2,R00(1)3+2 : i.,2.+2,1.+1,2.,1.+I : 1.+8

ROTATION MATRIX, SAX TO BAX - BLADE IN QUIESCENT POSITION.

R(1)I+2,R(1)2+2,R(1)3+2 : I.,2.+1,2.,.5,1., 2.,I.,.5 : i.+8

SHANK TO BLADE AXES EULERIAN X - FORMATION MATRIX, PACKED BY COLUMN.

RFS : i. : I.

OPERATOR ON F-F0 TO PRODUCE NO. I SAX TO BAX ROTATION, CONTROL POSITION

RRI(2)+I : 2.+I : I.+I

ROTATION MATRIX ELEMENTS - RELATIVE WIND TO BAX

RR2(2)+I : i.,2.5 : I.+i

ROTATION MATRIX ELEMENTS - RELATIVE WIND TO BAX

RR3(2)+I : I.+I : i.+I

ROTATION MATRIX ELEMENTS - RELATIVE WIND TO BAX

S : I. : I./R

LINE COORDINATE OF BLADE RADIAL STATION ALONG BRL

SAB : I. : I.

SINE OF BLADE SECTION ANGLE OF ATTACK (WRT CHORDLINE)

SFS : I. : I.

SIN(FS); FS = BLADE FEATHERING ANGLE.

SY : I. : I.

SIN(Y); Y = BLADE # 1 AZIMUTHAL ANGLE.

SYBI : i. : I.

SIN(YBI); YBI _ ANGLE BETWEEN BLADE # 1 AND BLADE # I.

SYBION : I. : I.

SYBI/NB.

SYI : I. : I.

SIN(Y+YBI); (Y+YBI) = BLADE # I AZIMUTHAL ANGLE.

UMBR(1)+2 : i0.,i0.,2.5 : I./XAR+2

BLADE ELEMENT MODIFIED ACCELERATION, R : SAX.

US(1)+2 : I0.+2 : I./XAR+2

ACCELERATION OF SHANK AXES. T:XA,S:S,B:I,R:S

VA(1)+2 : 2.5,.5,2.5 : I./VR+2

AERO VELOCITY OF BLADE AXES. S:B,B:A,R:B

VAA(1)+2 : 2.5,.5,2.5 : I./VR+2
AUGMENTIVE AERO VELOCITY DUE TO INTERFERENCE EFFECTS

VAC(1)+2 : 2.5+2 : I./VR+2

INTERMEDIATE VARIABLE
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VACT(1)+2 : 2.5,2.5,2.5 : I./VR+2

AERO VELOCITY SEEN BY THE BLADE (INCLUDING INTERFERENCE EFFECTS)

VAH(1)+2 : 2.5+2 : I./VR+2

AIRSPEED OF RAX, S:H,B:A,R:H

VAS(1)+2 : 2.5+2 : I./VR+2

SHANK AERODYNAMIC VELOCITY OF BLADE I. S:S,B:A,R:S.

VATU(1)+2 : 2.5+2 : I./VR+2

INTERMEDIATE VARIABLE

VC(1)+2 : 20 .+2 : I./VR+2

INTERMEDIATE VARIABLE

VDC(1)+2 : I0.+2 : I./XAR+2

INTERMEDIATE VARIABLE

VDH(1)+2 : 10.+2, : I./XAR+2

TIME DERIVATIVE OF VH TAKEN WRT HAX, S:H, B: I,R: H.

VDS(1)+2 : 10.+1,20. : I./XAR+2

TIME DERIVATIVE OF SHANK INERTIAL VELOCITY WRT SAX. S:S,B:I,R:S,D:S

VDTU(1)+2 : i0.+2 : I./XAR+2

INTERMEDIATE VARIABLE

VH(1)+2 : 20.+2 : I./VR+2

INERTIAL VELOCITY OF HAX, S :H, B: I,R: H

VS(1)+2 : 20.+2 : I./VR+2

INERTIAL VELOCITY OF BLADE SIIANK AXES. S:S,B:I,R:S.

VTU(1)+2 : 20.+2 : I./VR+2

INTERMEDIATE VARIABLE

VWT(1)+2 : 2.5+2 : I./VR+2

WIND VELOCITIES INCLUDING TURBULENCE AND RETARDATION.

WAC(1)+2 : 2.5+1,.5 : I./OR+2

INTERMEDIATE VARIABLE

WAH(1)+2 : 2.5+2 : 1./OR+2

AIRSPEED OF HAX, S:H,B:A,R:H

WAS(1)+2 : 2.5+2,.5 : 1./OR+2

SHANK AERODYNAMIC VELOCITY OF BLADE I. S:S,B:A,R:S.

WATU(1)+2 : 2.5+I,.5 : 1./OR+2

INTERMEDIATE VARIABLE

WCMZ(1)+2 : 5. ,5.,I0. : 1./OR+2

INTERMEDIATE VARIABLE, ( WC-Z )
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WDC(1)+2: 2.5+1,5. : I./RAR+2

INTERMEDIATE VARIABLE

WDH(1)+2 : 2.5,2.5,5. : I./RAR+2

TIME DERIVATIVE OF WH TAKEN WRT HA](, S:H,B:I,R:H.

WDS(1)+2 : 2.5+1,5. : I./RAR+2

TIME DERIVATIVE OF SHANK INERTIAL VELOCITY WRT SAX. S:S,B:I,R:S,D:S

WDSI(1)+2 : 2.5+2 : I./RAR+2

TIME DERIVATIVE WSI TAKEN WRT SAX. S:S,B:I,R:S,D:S

WDTU(1)+2 : 2.5+1,5. : I./RAR+2

INTERMEDIATE VARIABLE

WH(1)+2 : 5.,5.,10. : 1./OR+2

INERTIAL VELOCITY OF HAX, S:H,B:I,R:H

WS(1)+2 : 5.,5.,.5 : I./OR+2

INERTIAL VELOCITY OF BLADE SHANK AXES. S:S,B:I,R:S.

WSMZ(1)+2 : 5.+1,10. : 1./OR+2

WS MINUS Z, WS WITH g REMOVED TO IMPROVE SCALING

WTUMZ(1)+2 : 5.,5.,10 : I./OR+2

INTERMEDIATE VARIABLE, ( WTU-Z )

WWT(1)+2 : 2.5+2 : 1./OR+2

WIND VELOCITIES INCLUDING TURBULENCE AND RETARDATION.

X(1)+2 : 40 .+2 : I./R+2

PERTURBATION OF BRL FROM POSITION CALCULATED USING LINEAR MODEL.

XD(1)+2 : 20.+2 : I./VR+2

PERTURBATION OF BRL SPEED FROM THAT COMPUTED USING LINEAR MODEL.

XDD(1)+2 : 10.+2 : I./XAR+2

PERTURBATION OF BRL ACCELERATION FROM THAT COMPUTED USING LINEAR MODEL.

Z : .5 : 1./OR

ROTOR SPIN RATE-RAD/SEC

ZD : 5. : I./RAR

ROTOR SPIN ACCELERATION-TIME DERIVATIVE OF Z.

ZP:I. : I.

(Z/Z0 - I.), PERTURBATION OF Z FROM THE REFERENCE VALUE, Z0.

ZSQ : .25 : I./RAR

Z SQUARED.

ZZ : .5: I.

(Z/Z0)**2 - 1 , QUADRATIC DIFFERENTIAL SPIN RATE.
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C TOWERSHADOWANDWINDSHEAR
C
C FORCONVENIENCE,THESEEFFECTSHAVEBEENINCLUDEDIN THEROTORMODEL.
C NORMALLYTHEYAREPARTOFTHE"AIR MASS"SUBSYSTEM.
C

SHD: I. : I.
SHADOWEFFECT-MODULATINGCOEFFICIENT.

SHR: I. : I.

WINDSHEAR MODULATING COEFFICIENT
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C
C SUPPORTSYSTEM: 2.0

C

GS(1)+I : .5+2 : I./RAR+2

GENERALIZED FORCING FUNCTION ON SUPPORT SYSTEM MODES

MPOD : I. : I./MR

MOMENT ABOUT THE 3-AXIS TRANSMITTED FROM THE POD TO THE TOWER

S(I)+2 : I0.,i0.,20. : 1.+2

SUPPORT SYSTEM MODAL COORDINATES

SD(1)+2 : 1.,1.,2. : 1./OR+2

TIME DERIVATIVE OF SUPPORT SYSTEM MODAL COORDINATES.

SDD(1)+I : .5,.5,.5 : I./RAR+2

SECOND TIME DERIVATIVE OF SUPPORT SYSTEM MODAL COORDINATES.

VBH(1)+2 : 20.+2, : I./VR+2

INERTIAL VELOCITY OF TOWER BASE, S:BT,B:I,R:H.

VDBH(1)+2 : 10.+2 : I./XAR+2

TIME DERIV. OF INERTIAL VELOC. TAKEN WITH RESPECT TO TOWER BASE AXES.

WBH(1)+2 : 5.,5.,i0. : 1./OR+2

INERTIAL VELOCITY OF TOWER BASE, S:BT,B:I,R:H.

WDBH(1)+2 : 2.5+1,5. : I./RAR+2

TIME DERIV. OF INERTIAL VELOC. TAKEN WITH RESPECT TO TOWER BASE AXES.

C

C CONTROL SYSTEM : 3.0

C

A(1)+2 : 2.,.5,5. : I.+2

CONTROL SYSTEM STATE VECTOR.

AD(1)+2 : 2.,.02,.5 : I./OR+2

TIME DERIVATIVE OF A.

C(I)+2 : .5,5.+1 : 1.+2

ROTOR CONTROLS, COLLECTIVE PITCH, A1 AND B1 CYCLIC PITCH(RADIANS).

LGC : I. : 1./MR

ELECTRICAL GENERATOR/ALTERNATOR CONTROL.

ZA : .5 : 1./OR

ALTERNATOR/GENERATOR ROTOR ROTATIONAL SPEED.

ZERR : 2. : 1./OR

ERROR IN THE RATIOS OF ROTOR SPEED: (ZREQ/Z0 - Z/ZO)
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C

C POWER TRAIN : 4.0

C

CDY : .5 : i.

ONE HALF OF COSINE OF ROTOR ADVANCE ANGLE, COS(DY)

CYHAF : .5 : i.

ONE HALF OF COSINE OF THE ROTOR AZIMUTHAL ANGLE CY.

CYSAV : .5 : i.

HOLDS A "SAVE" VERSION OF CYHAF.

EA : .25 : I.

AMPLITUDE ERROR IN RATE RESOLVER - POWER TRAIN MODEL.

PI,P2 : I.,25. : i.+I

POWER TRAIN COORDINATE VECTOR

PDI,PD2 : .5,5. : I./OR+I

TIME DERIVATIVE OF POWER TRAIN COORDINATES ,P.

PDDI,PDD2 : 5.,.5 : I./RAR+I

DOUBLE TIME DERIVATIVE OF POWER TRAIN COORDINATES,P.

SDY : I. : I.

SINE OF ROTOR ADVANCE ANGLE, SIN(DY).

SYHAF : .5 : I.

ONE HALF OF SINE OF THE ROTOR AZI_THAL _GLE SY.

C

C AIR MASS : 5.0

C

EVR : .04 : I.

ERROR FUNCTION ON VELOCITY RECIPROCAL IN AIR MASS MODELS.

QGU(1)+5 : 256.+5 : 1.+5
WIND GUST FILTER COLUMN OF STATISTICAL DEGREES OF FREEDOM.

QDGU(1)+5 : 16.+5 : I./OR+5

TIME DERIVATIVE OF QG (_NDGUST STATISTICS).

QDDGU(1)+5 : I.+5 : I./RAR+5

DOUBLE TIME DERIVATIVE OF QG(WINDGUST STATISTICS).

QDGU0(1)+5 : 16.+5 : I./OR+5

OLD GUST VELOCITY USED IN NUMERICAL INTEGRATION.

RANDOM : I. : I.

RANDOM VARIABLE (RANDOM NUMBER) IN WINDGUST MODEL.

RV : .04 : VR

VELOCITY RECIPROCAL IN AIR MASS RETARDATION MODEL.

VG(1)+2 : 2.5+2 : I./VR+2
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WINDGUST VELOCITIES.

VRW : 2.5 : I./VR

WIND RETARDATION VELOCITY-AIR MASS MODELS.

VW(1)+2,W-W(1)+2 : 2.5+5 : I./VR+2,1./OR+2

WIND INERTIAL VELOCITY. S:W,B:I,K:O

WG(1)+2 : 2.5+2 : 1./OR+2

WINDGUST VELOCITIES.

WW(1)+2 : 2.5+2 : 1./0R+2

WIND INERTIAL VELOCITY. S:W,B:I,R:O
C

C TOWER SHADOW AND WIND SHEAR

C

C FOR CONVENIENCE, THESE EFFECTS HAVE BEEN INCLUDED IN THE ROTOR MODEL.
C

C EXPANDED VERSION OF VARIABLES FOR EACH BLADE.

C THE 2 BLADES ARE DESIGNATED "A" AND "B"

C

QI(1)A+2 : 2.+2 : 1.+2

QI(1)B+2 : 2.+2 : 1.+2

QDI(1)A+2 : I.+2 : I./OR+2

QDI(1)B+2 : 1.+2 : I./OR+2

QDDI(1)A+2 : .2+2 : I./RAR+2

QDDI(1)B+2 : .2+2 : I./RAR+2
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C
C CONSTANTSAPPEARINGIN THESYSTEMEQUATIONS
C
C JUNE1985
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

I. THESIMULATIONMODELIS SETUPFORTHEFOLLOWINGMAXIMUMS:

BLADES.................................. (NB) 2
RADIALSTATIONSPERBLADE............... (NR) II
CONTROLSYSTEMSTATEVECTORELEMENTS.... (NC) 3
ELASTICMODESPERBLADE................. (NM) 3
GIMBALDEGREESOFFREEDOM............... (NG) 1
POWERTRAINDEGREESOFFREEDOM.......... (NP) 2

2. THEEXISTINGPREPROCESSORPROGRAMSREQUIRETHATALL CONSTANTSUSED
FORSCALINGANDNORMALIZATIONBEDEFINEDIN THIS FILE, IRRESPCTIVE
OFWHETHERTHEYAPPEAREXPLICITLYIN THESYSTEMEQUATIONSORNOT.

3. EVERYCONSTANTLISTEDIN THIS FILE MUSTAPPEARIN THEDSS2OUTPUT
FILES"DSS2.SNG"OR"DSS2.TBL".

4. SINCETHEPREPROCESSORPROGRAMSLIMIT THERANGEOFALL CONSTANTS
TO+/- i, THECONSTANTS"NB" AND"NR" WHICHAREUSEDAS PROGRAM
LOOPINGPARAMETERS,AREEXPLICITLYDEFINEDIN THESYSTEMEQUATIONS.

C ......

C

C CONSTANTS USED FOR NORMALIZATION AND SCALING

C

C34 : I. : I.

BLADE CHORD AT 3/4 RADIUS POINT (FEET).

FR : i. : i.

REFERENCE FORCE USED FOR NORMALIZATION.

MR: i. : i.

REFERENCE MOMENT = R*FR

NB : i. : i.

NUMBER OF BLADES IN THE ROTOR

OR : I. : I.

REFERENCE ROTATIONAL VELOCITY = Z0 (RAD/SEC)

R : I. : I.

ROTOR RADIUS (FEET)

RAR : i. : I.

REFERENCE ROTATIONAL ACCELERATION -- Z0**2

VR: i. : I.

REFERENCE TRANSLATIONAL VELOCITY = R'Z0 (FT/SEC)

XAR : i. : i.

REFERENCE TRANSLATIONAL ACCELERATION = R'Z0**2

F-14



Z0:I. : I.
NOMINALROTORSPINRATE(RAD/SEC)

C
C ROTOR MODEL : i.I THROUGH 1.17

C

CYB : I. : I.

COSINE (YB); YB w 2*PI/NB

CYC : I. : I.

COSINE (YC); YC w ANGLE TO ROTATE ROTOR AXES TO TEETER AXES

CYP.2 : I. : i.

COSINE (YR2); YR2 -- ROTOR SHAFT ANGLE WITH RESPECT TO VERTICAL

DT : I. : OR

NUMERICAL INTEGRATION ON TIME-STEP SIZE, SECONDS.

DTQ : 5. : OR

TIME-STEP SIZE, USED IN CORRECTING MODAL QUANTITIES.

ESQQII,ESQQ22,ESQQ33 : .1,.05,.01 : I./RAR+2

ELEMENTS IN MATRIX OF MODAL FREQUENCIES (RAD/SEC)**2

FO : .5 : i.

BLADE QUIESCENT FEATHERING CONTROL ANGLE.

FOI,F02,F03 : .i,i.,.I : I./FR+2

AERODYNAMIC & INERTIAL FORCES IN THE QUIESCENT STATE

FQI(1)+2,FQ2(1)+2,FQ3(1)+2 : .5+2,.5,.125+1,.05+2 : I./FR+8

OPERATOR IN SHANK FORCE FORMULA.

FQDI(1)+2,FQD2(1)+2,FQD3(1)+2 : I.+2,1.+2,.1+2 : OR/FR+8

OPERATOR IN SHANK FORCE FORMULA.

FZI,FZ2,FZ3 : .1,2.,.2 : I./FR+2

AERODYNAMIC FORCES - ROTOR SPEED VARIATIONS

FZQI(1)+2,FZQ2(1)+2,FZQ3(1)+2 : 1.+2,1.,.25+1,.I+2 : I./FR+8

OPERATOR IN SHANK FORCE FORMULA.

FZQDI(1)+2,FZQD2(1)+2,FZQD3(1)+2 : 1.+2,1.+2,.1+2 : OR/FR+8

OPERATOR IN SHANK FORCE FORMULA

GB0(1)+2 : .5+2 : I./RAR+2

CONSTANT COLUMN IN GENERALIZED FORCING FUNCTION FORMULA.

GQA,GQZA : I.+I : RAR/I.+I
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

GQQ,GQV,GQZV : 1.+2 : I.,OR/I.+I
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA
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GV(1)I+2,GV(1)2+2,GV(1)3+2 : .25+8 : I./OR+8

CONSTANT OPERATOR IN GENERALIZED FORCING FUNCTION FORMULA

GVA,GVZA : i.+I : OR/I o+1
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

GVV,GVQ,GVZQ : 1.+2 : I.,I./OR+I

CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

GZQ(1)I+2,GZQ(1)2+2,GZQ(1)3+2 : .25+8 : I./RAR+8
CONSTANT OPERATOR IN GENERALIZED FORCING FUNCTION FORMULA

GZV(1)I+2,GZV(1)2+2,GZV(1)3+2 : .25+8 : I./OR+8

CONSTANT OPERATOR IN GENERALIZED FORCING FUNCTION FORMULA

KGE : 20. : MR/RAR

CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

KGQC : I. : NB/RAR
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

KGQS : i. : NB/RAR

CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

KGVC : I. : NB/OR

CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

KGVS : I. : NB/OR

CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

KQGII,KQG22,KQG33 : 8.+2 : RAR+2
CONSTANT IN BLADE NOP_MAL COORDINATE INTEGRATION ALGORITHM

KQQII,KQQ22,KQQ33 : 1.+2 : 1.+2
CONSTANTS IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KQVlI,KQV22,KQV33 : 2.+2 : OR+2

CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KQZGII,KQZG22,KQZG33 : 8.+2 : RAR+2
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KQZQII,KQZQ22,KQZQ33 : I.+2 : I.+2

CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KQZVlI,KQZV22,KQZV33 : 2.+2 : OR+2

CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KVGII,KVG22,KVG33 : 4.+2 : OR+2
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KVQII,KVQ22,KVQ33 : .5+2 : I./OR+2

CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KVVII,KVV22,KVV33 : 1.+2 : 1.+2
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CONSTANTSIN NORMALCOORDINATEINTEGRATIONALGORITHM

KVZGII,KVZG22,KVZG33: 4.+2 : 0R+2
CONSTANTIN BLADENORMALCOORDINATEINTEGRATIONALGORITHM

KVZQII,KVZQ22,KVZQ33: .5+2 : 1./OR+2
CONSTANTIN BLADENORMALCOORDINATEINTEGRATIONALGORITHM

KVZVII,KVZV22,KVZV33: 1.+2 : I+2
CONSTANTIN BLADENORMALCOORDINATEINTEGRATIONALGORITHM

M01,M02,M03: .25,.25,1. : 1./MR+2
AERODYNAMICMOMENTSIN THEQUIESCENTSTATE

MQI(1)+2,MQ2(1)+2,MQ3(1)+2: .125+2,.125+2,.5,.25+I : 1./MR+8
OPERATORIN SHANKFORCEFORMULA

MQDI(1)+2,MQD2(1)+2,MQD3(1)+2: .25+2,.25+2,1.+2 : OR/MR+8
OPERATORIN SHANKFORCEFORMULA

MZI,MZ2,MZ3: .5,.5,2. : 1./MR+2
AERODYNAMICMOMENTS- ROTORSPEEDVARIATIONS

MZQI(1)+2,MZQ2(1)+2,MZQ3(1)+2: .25+2,.25+2,1.,.5+1 : I./MR+8
OPERATORIN SHANKFORCEFORMULA

MZQDI(1)+2,MZQD2(1)+2,MZQD3(1)+2: .25+2,.25+2,1.+2 : OR/MR+8
OPERATORIN SHANKFORCEFORMULA

PR : I. : I.
AIR PRESSURERATIO, P/P0; (ACTUAL/STANDARDSEALEVEL)

QFACT: .01 : NB*R*C34/FR
FACTOR;AERODYNAMICPRESSURE= 1481

RNB: I. : I.
THERATIOI./NB

RVC: 2. : VR
RECIPROCALOFTHESPEEDOFSOUND

SYB: I. : I.
SINE (YB); YB= 2*PI/NB

SYC: I. : I.
SINE (YC); YC= ANGLETOROTATEROTORAXESTOTEETERAXES

SYR2: I. : I.
SINE (YR2); YR2= ROTORSHAFTANGLEWITHRESPECTTOVERTICAL

ZU : i0. : I./R
ROTORUNDER-ORSIDE-SLING.

C
C TOWERSHADOWANDWINDSHEAR
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C
C FOR CONVENIENCE THESE EFFECTS HAVE BEEN INCLUDED IN THE ROTOR MODEL.

C NORMALLY THEY ARE PART OF THE "AIR MASS" SUBSYSTEM.

C

SHADOW : I. : I.

AIR VELOCITY REDUCTION DUE TO TOWER SHADOW : (.28 => 28 %).

SHDSEC : I. : 1

COSINE OF HALF THE ANGLE DEFINING THE TOWER SHADOW SECTOR.

SHEAR : i. : i.

WIND SHEAR STRENGTH EXPRESSED AS A FRACTION. (.15 --> 15 %)
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C
C SUPPORTSYSTEM: 2.0
C

DSII,DS22,DS33 : .5,.5,.25 : 1./OR+2
DAMPING(DIAGONAL)MATRIX-SUPPORTSYSTEMMODALEQUATIONS.

DTS : I0. : OR
NUMERICALINTEGRATIONDT : SUPPORTSYSTEM

GSFII,GSFI3,GSF22,GSF32: .5,2.5,.5,.5 : FR/RAR+3
PARTICIPATIONFACTORONFORCE-SUPPORTSYSTEM

GSMI2,GSM23,GSM31: 2.,.5,1. : MR/RAR+2
PARTICIPATIONFACTORSONMOMENT-SUPPORTSYSTEM

SVII,SV22,SV23,SV31: 20.,20.,20.,20. : I./R+3
TRANSLATIONALVELOCITYMODALMATRIX-SUPPORTSYSTEM

SWI3,SW21,SW32: 5.,5.,10. : 1.+2
ROTATIONALVELOCITYMODALMATRIX-SUPPORTSYSTEM.

W2SII,W2S22,W2S33: .05,.05,.025 : I./RAR+2
FREQUENCYSQUARED(DIAGONAL)MATRIX-SUPPORTSYSTEMMODALEQUATIONS.

C
C CONTROLS: 3.0
C

AA21,AA22: .01,.04 : I./OR+I
CHARACTERISTICMATRIXIN CONTROLSYSTEMSTATEEQUATION.

AD03 : .5 : I./OR
CONTROLSYSTEMPARTICIPATIONFACTOR

AG3 : I. : I.
CONTROLSYSTEMPARTICIPATIONFACTOR

AZI,AZ2 : I.,.01 : i.+i
CONTROLSYSTEMPARTICIPATIONFACTORS

CA12 : I. : I.
CONTROLSYSTEMRESULTOPERATOR,ATOC.

DTCI,DTC2,DTC3: I.,12.5,10. : 0R+2
NUMERICALINTEGRATIONDT : CONTROLS

LAI3 : .I : I./MR
CONTROLSYSTEMRESULT,ATOALTERNATORCONTROL

LG : i. : OR/MR
CONTROLSYSTEMRESULTOPERATOR

LPR : I. : 1./MR
CONTROLSYSTEMRESULTOPERATOR

PRQ: .5: I.
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REQUESTEDPOWERRATIO(REQUESTEDPOWER/RATEDPOWER)

SRQ: .5: 1.
REQUESTED SPEED RATIO =" ZREQ/Z0

C

C POWER TRAIN : 4.0

C

BPII,BPI2,BP21,BP22 : 5.,.5,1.,.I : 1./OR+3

POWER TRAIN DAMPING MATRIX

DTPI,DTP2 : .I,i0. : OR+I

NUMERICAL INTEGRATION DT : POWER TRAIN.

KPI2,KP22 : .1,.02 : I./RAR+I

POWER TRAIN STIFFNESS MATRIX.

PL2 : .125 : MR/RAR

CONTROL SYSTEM INFLUENCE FACTOR-POWER TRAIN MODAL.

PMI,PM2 : 2.5,.5 : MR/RAR+I

ROTOR MOMENT INFLUENCE FACTOR-POWER TRAIN MODAL.

PZDI,PZD2 : .5,.1 : i.+I

ROTOR ACCELERATION INFLUENCE FACTOR-POWER TRAIN MODEL.

C

C AIR MASS : 5.0

C

DTG : 16. : OR

GUST FILTER NUMERICAL INTEGRATION STEP SIZE

GCEV : .0625 : I.

GAIN IN RETARDATION VELOCITY SERVO.

KAR : 625. : FR/VR*VR

GLAUERT CONSTANT = I./(2.*PI*R*R*RHO0); RHO0 = STANDARD AIR DENSITY

RHOR : .5 : 1.

AIR DENSITY RATIO = RHO0/RHO; (STANDARD SEA LEVEL / ACTUAL)

VGUII,VGU22,VGU33 : 2.5+2 : I./R+2

WlNDGUST TRANSLATIONAL VELOCITY COEFFICIENT MATRIX

WGGII,WGG22,WGG33,WGG44,WGG55,WGG66 : .0625+5 : I./RAR+5

WINDGUST FILTER ROTATIONAL FREQUENCIES (RAD/SEC).

WGUII,WGU22,WGU33 : 2.5+2 : 1.+2

WINDGUST ROTATIONAL VELOCITY COEFFICIENT MATRIX

ZTGII,ZTG22,ZTG33,ZTG44,ZTG55,ZTG66 : 1.+5 : 1.+5

DAMPING COEFFICIENTS IN WINDGUST FILTERS.

C

C TOWER SH2d)0W AND WIND SHEAR
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C
C FOR CONVENIENCE THESE EFFECTS HAVE BEEN INCLUDED IN THE ROTOR MODEL.
C

C EXPANDED VERSION OF CONSTANTS AT EACH RADIAL STATION.

C THE Ii RADIAL STATIONS ARE DESIGNATED "A" THROUGH "K".
C

BO0(1)A+2 : I.,5.+I : I./R+2

BO0(1)B+2 : 1.,5.+i : 1.1R+2

B00(1)C+2 : I.,5.+I : I./R+2

BOO(1)D+2 : I.,5.+I : I./R+2

BO0(1)E+2 : I.,5.+i : I./R+2

B00(1)F+2 : I.,5.+I : I./R+2

B00(1)G+2 : I.,5.+i : I./R+2

BO0(1)H+2 : I.,5.+I : I./R+2

B00(1)I+2 : I.,5.+I : I./R+2

B00(1)J+2 : I.,5.+I : I./R+2

B00(1)K+2 : I.,5.+i : I./R+2

CBA : .5 : I./C34

CBB : .5 : I./C34

CBC : .5 : I./C34

CBD : .5 : I./C34

CBE : .5 : I./C34

CBF : .5 : I./C34
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CBG: .5 : I./C34

CBH : .5 : I./C34

CBI : .5 : I./C34

CBJ : .5 : I./C34

CBK : .5 : I./C34

DA(1)IA+2,DA(1)2A+2,DA(1)3A+2 : i.+8 : 1.+8

DA(1)IB+2,DA(1)2B+2,DA(1)3B+2 : I.+8 : I.+8

DA(1)IC+2,DA(1)2C+2,DA(1)3C+2 : 1.+8 : 1.+8

DA(1)ID+2,DA(1)2D+2,DA(1)3D+2 : I.+8 : I.+8

DA(1)IE+2,DA(1)2E+2,DA(1)3E+2 : I.+8 : I.+8

DA(1)IF+2,DA(1)2F+2,DA(1)3F+2 : I.+8 : I.+8

DA(1)IG+2,DA(1)2G+2,DA(1)3G+2 : 1.+8 : 1.+8

DA(1)IH+2,DA(1)2H+2,DA(1)3H+2 : 1.+8 : 1.+8

DA(1)II+2,DA(1)21+2,DA(1)31+2 : i.+8 : I.+8

DA(1)IJ+2,DA(1)2J+2,DA(1)3J+2 : I.+8 : 1.+8

DA(1)IK+2,DA(1)2K+2,DA(1)3K+2 : I.+8 : I.+8

DB(1)IA+2,DB(1)2A+2,DB(1)3A+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+I : I./R+8

DB(1)IB+2,DB(1)2B+2,DB(1)3B+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+I : I./R+8
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DB(1)IC+2,DB(1)2C+2,DB(1)3C+2 : 5.,2.5+I,5.,2.5+1,5.,2.5+I : I./R+8

DB(1)ID+2,DB(1)2D+2,DB(1)3D+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+i : I./R+8

DB(1)IE+2,DB(1)2E+2,DB(1)3E+2 : 5.,2.5+I,5.,2.5+1,5.,2.5+i : 1./R+8

DB(1)IF+2,DB(1)2F+2,DB(1)3F+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+I : I./R+8

DB(1)IG+2,DB(1)2G+2,DB(1)3G+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+I : I./R+8

DB(1)IH+2,DB(1)2H+2,DB(1)3H+2 : 5.,2.5+1,5.,2.5+I,5.,2.5+i : I./R+8

DB(1)II+2,DB(1)21+2,DB(1)31+2 : 5.,2.5+1,5.,2.5+I,5.,2.5+I : I./R+8

DB(1)IJ+2,DB(1)2J+2,DB(1)3J+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+I : I./R+8

DB(1)IK+2,DB(1)2K+2,DB(1)3K+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+I : I./R+8

DSA : I0. : I./R

DSB : I0. : I./R

DSC : I0. : I./R

DSD : i0. : I./R

DSE : I0. : I./R

DSF : i0. : I./R

DSG : I0. : I./R

DSH : I0. : I./R

DSI : I0. : I./R
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DSJ : I0. : I./R

DSK : I0. : I./R

FAO(1)A+2 : .5,.25,.I : N-B*R/FR+2

FAO(1)B+2 : .5,.25,.I : NB*R/FR+2

FAO(1)C+2 : .5,.25,.I : NB*R/FR+2

FAO(1)D+2 : .5,.25,.i : NB*R/FR+2

FAO(1)E+2 : .5,.25,.I : NB*R/FR+2

FAO(1)F+2 : .5,.25,.I : NB*RrFR+2

FA0(1)G+2 : .5,.25,.I : NB*R/FR+2

FAO(1)H+2 : .5,.25,.I : NB*R/FR+2

FAO(1)I+2 : .5,.25,.I : NB*R/FR+2

FAO(1)J+2 : .5,.25,.I : NB*R/FR+2

FA0(1)K+2 : .5,.25,.I : NB*R/FR+2

FP(1)IA+2,FP(1)2A+2,FP(1)3A+2 : .2+2,.4+2,1.,I.,.5 : 1.+8

FP(1)IB+2,FP(1)2B+2,FP(1)3B+2 : .2+2,.4+2,1.,I.,.5 : 1.+8

FP(1)IC+2,FP(1)2C+2,FP(1)3C+2 : .2+2,.4+2,1.,!.,.5 : 1.+8

FP(1)ID+2,FP(1)2D+2,FP(1)3D+2 : .2+2,.4+2,1.,I.,.5 : I.+8

FP(1)IE+2,FP(1)2E+2,FP(1)3E+2 : .2+2,.4+2,1.,I.,.5 : 1.+8

FP(1)IF+2,FP(1)2F+2,FP(1)3F+2 : .2+2,.4+2,1.,I.,.5 : I.+8
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FP(1)IG+2,FP(1)2G+2,FP(1)3G+2: .2+2,.4+2,1.,1.,.5 : 1.+8

FP(1)IH+2,FP(1)2H+2,FP(1)3H+2: .2+2,.4+2,1.,I.,.5 : 1.+8

FP(1)II+2,FP(1)21+2,FP(1)31+2 : .2+2,.4+2,1.,1.,.5 : 1.+8

FP(1)IJ+2,FP(1)2J+2,FP(1)3J+2 : .2+2,.4+2,1.,I.,.5 : I.+8

FP(1)IK+2,FP(1)2K+2,FP(1)3K+2 : .2+2,.4+2,1.,I.,.5 : 1.+8

GP(1)IA+2,GP(1)2A+2,GP(1)3A+2 : .05+2,.1+2,.25+2 : FR/NB*RAR+8

GP(1)4A+2 : I.,I.,.8 : FR/NB*RAR+I,FR*C34/NB*R*RAR

GP(1)IB+2,GP(1)2B+2,GP(1)3B+2 : .05+2,.1+2,.25+2 : FR/NB*RAR+8

GP(1)4B+2 : I.,I.,.8 : FR/NB*RAR+I,FR*C34/NB*R*RAR

GP(1)IC+2,GP(1)2C+2,GP(1)3C+2 : .05+2,.I+2,.25+2 : FR/NB*RAR+8

GP(1)4C+2 : I.,i.,.8 : FR/NB*RAR+I,FR*C34/NB*R*RAR

GP(1)ID+2,GP(1)2D+2,GP(1)3D+2 : .05+2,.I+2,.25+2 : FR/NB*RAR+8

GP(1)4D+2 : I.,I.,.8 : FR/NB*RAR+I,FR*C34/NB*R*RAR

GP(1)IE+2,GP(1)2E+2,GP(1)3E+2 : .05+2,.1+2,.25+2 : FR/NB*RAR+8

GP(1)4E+2 : I.,I.,.8 : FR/NB*RAR+I,FR*C34/NB*R*RAR

GP(1)IF+2,GP(1)2F+2,GP(1)3F+2 : .05+2,.1+2,.25+2 : FR/NB*RAR+8

GP(1)4F+2 : I.,i.,.8 : FR/NB*RAR+I,FR*C34/NB*R*RAR

GP(1)IG+2,GP(1)2G+2,GP(1)3G+2 : .05+2,.I+2,.25+2 : FR/NB*RAR+8
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GP(1)4G+2 : i.,i.,.8 : FR/NB*RAR+I,FR*C34/NB*E*RAR

GP(1)IH+2,GP(1)2H+2,GP{I)3H+2 : .05+2,.1+2,.25+2 : FR/NB*RAR+8

GP(1)4H+2 : I.,i.,.8 : FR/NB*RAR+I,FR*C34/NB*R*RAR

GP(1)II+2,GP(1)21+2,GP(1)31+2 : .05+2,.I+2,.25+2 : FR/NB*RAR+8

GP(1)41+2 : i.,I.,.8 : FR/NB*RAR+I,FR*C34/NB*R*RAR

GP(1)IJ+2,GP(1)2J+2,GP(1)3J+2 : .05+2,.1+2,.25+2 : FR/NB*RAR+8

GP(1)4J+2 : I.,I.,.8 : FR/NB*RAR+I,FR*C34/NB*R*RAR

GP(1)IK+2,GP(1)2K+2,GP(1)3K+2 : .05+2,.I+2,.25+2 : FR/NB*RAR+8

GP(1)4K+2 : I.,I.,.8 : FR/NB*RAR+I,FR*C34/NB*R*RAR

MBA : .025 : NB*VR*VR/FR

MBB : .025 : NB*VR*VR/FR

MBC : .025 : NB*VR*VR/FR

MBD : .025 : NB*VR*VR/FR

MBE : .025 : NB*VR*VR/FR

MBF : .025 : NB*VR*VR/FR

MBG : .025 : NB*VR*VR/FR

MBH : .025 : NB*VR*VR/FR

MBI : .025 : NB*VR*VR/FR
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MBJ : .025 : NB*VR*VR/FR

MBK : .025 : NB*VR*VR/FR

MP(1)IA+2,MP(1)2A+2,MP(1)3A+2 : .2,.5+I,.4,1.+I,I.,i.25,2.5 : I./R+8

MP(1)IB+2,MP(1)2B+2,MP(1)3B+2 : .2,.5+I,.4,1.+I,I.,I.25,2.5 : I./R+8

MP(1)IC+2,MP(1)2C+2,MP(1)3C+2 : .2,.5+I,.4,1.+I,I.,i.25,2.5 : I./R+8

MP(1)ID+2,MP(1)2D+2,MP(1)3D+2 : .2,.5+I,.4,1.+I,I.,i.25,2.5 : I./R+8

MP(1)IE+2,MP(1)2E+2,MP(1)3E+2 : .2,.5+I,.4,1.+I,I.,I.25,2.5 : I./R+8

MP(1)IF+2,MP(1)2F+2,MP(1)3F+2 : .2,.5+I,.4,1.+I,I.,I.25,2.5 : I./R+8

MP(1)IG+2,MP(1)2G+2,MP(1)3G+2 : .2,.5+I,.4,1.+I,I.,I.25,2.5 : I./R+8

MP(1)IH+2,MP(1)2H+2,MP(1)3H+2 : .2,.5+I,.4,1.+I,I.,I.25,2.5 : I./R+8

MP(1)II+2,MP(1)21+2,MP(1)31+2 : .2,.5+I,.4,1.+I,i.,I.25,2.5 : I./R+8

MP(1)IJ+2,MP(1)2J+2,MP(1)3J+2 : .2,.5+I,.4,1.+I,I.,I.25,2.5 : I./R+8

MP(1)IK+2,1_t_(1)2K+2,MP(1)3K+2 : .2,.5+I,.4,1.+I,I.,I.25,2.5 : I./R+8

RFSA : i. : i.

RFSB : I. : I.

RFSC : I. : I.

RFSD : I. : I.

RFSE : I. : I.

RFSF : I. : I.
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RFSG: I. : i.

RFSH: I. : i.

RFSI : I. : I.

RFSJ : I. : I.

RFSK : I. : I.

ROO(1)IA+2,ROO(1)2A+2,R00(1)3A+2 : 1.,2.+2,1.+1,2.,I.+1 : 1.+8

R00(1)IB+2,RO0(1)2B+2,R00(1)3B+2 : 1.,2.+2,1.+1,2.,1.+1 : 1.+8

R00(1)IC+2,ROO(1)2C+2,RO0(1)3C+2 : I.,2.+2,1.+1,2.,1.+I : I.+8

R00(1)ID+2,RO0(1)2D+2,R00(1)3D+2 : I.,2.+2,1.+1,2.,1.+I : I.+8

R00(1)IE+2,RO0(1)2E+2,R00(1)3E+2 : 1.,2.+2,1.+1,2.,I.+1 : I.+8

ROO(1)IF+2,RO0(1)2F+2,R00(1)3F+2 : I.,2.+2,1.+1,2.,I.+I : 1.+8

R00(1)IG+2,ROO(1)2G+2,R00(1)3G+2 : 1.,2.+2,1.+1,2.,I.+1 : I.+8

ROO(1)IH+2,ROO(1)2H+2,ROO(1)3H+2 : 1.,2.+2,1.+1,2.,I.+i : I.+8

R00(1)II+2,RO0(1)21+2,R00(1)31+2 : I.,2.+2,1.+1,2.,1.+1 : 1.+8

R00(1)IJ+2,RO0(1)2J+2,RO0(1)3J+2 : 1.,2.+2,1.+1,2.,1.+I : i.+8

R00(1)IK+2,ROO(1)2K+2,R00(1)3K+2 : 1.,2.+2,1.+1,2.,1.+1 : 1.+8

SA : I. : I./R

SB : I. : I./R
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SC : I. : I./R

SD : I, : I./R

SE : I. : I./R

SF : I. : I./R

SG : I. : I./R

SH : I. : I./R

SI : i. : I./R

SJ : I. : I./R

SK : I. : I./R
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APPENDIX G

PHYSICAL EQUATIONS OF THE WIND TURBINE SIMULATION MODEL

Presented in this Appendix are the physical equations which constitute

the simulation model of a wind turbine. These equations have to be scaled

and normalized for use in WEST-3.

Page
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Support (tower) .......................................... G-18

Control System ........................................... G-19
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Air Mass ................................................. G-20
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C

C
C WEST-3PHYSICALEQUATIONS:JUNE1985
C

C
C
C INITIALIZATIONS
C

NB= 2
NR= II

C

C

C

C

C

C

C

Z = ZINT
ZD=0

CY = II

SY = 0

CDY= 1.

VHI= VBHI

VH2= VBH2

VH3= VBH3

WHI= WBHI

WH2= WBH2

WH3= WBH3

VDHI= VDBHI

VDH2= VDBH2

VDH3-- VDBH3

WDHI-- WDBHI

WDH2= _DBH2

WDH3= WDBH3

VWTI = VWI

VWT2 = VW2

VWT3 = VW3

WWTI = WWI

WWT2 = _42

WWT3 = WW3

VRW = 0

S1 = 0

$2 = 0

$3 = 0

SDI= 0

SD2= 0

SD3= 0

CI = 0

A1 = 0

A2 = 0

A3=0

ZA= 0
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PDI= Z
P2=0
PD2=0

C
C SETALL MODALQUANTITIESTOZERO
C

CALLLOADQS(0)
C
C
C***************** BEGININGOFINFINITE LOOP *************************
C
9000 CONTINUE

C
C
C AEROELASTICROTORMODEL
C
C ROTORSPEEDVARIABLES
C

ZP = Z/Z0 - I.
zz = (z/zo)*(z/zo) - I.
ZSQ'Z*Z

C

C 1.2 HUB TO SHANK TRANSFORMATIONS

C

C MANY OF THE TRANSFORMATIONS ARE COMMON TO ALL THE

C BLADES, AND ARE PROCESSED OUTSIDE THE BLADE LO01_.

C

C GEOMETRY

C

SYT = SYC*CY - CYC*SY

CYT = CYC*CY + SYC*SY

C

C INERTIAL VELOCITY

C

WTUMZI -- CYT*WHI + SYT*WH2

WTUMZ2 =-SYT*WHI + CYT*WH2

WTUMZ3 = WH3

VTUI = CYT*VHI + SYT*VH2 + ZU*WTUMZ2

VTU2 =-SYT*VHI + CYT*VH2 - ZU*WTUMZI

VTU3 = VH3

WCMZI = WTUMZI - WTUMZ3*QGI + Z*QGI

WCMZ2 = WTUMZ2 + QDGI

WCMZ3 = WTUMZ3 + WTUMZI*QGI

VCI = VTUI - VTU3*QGI - ZU*WCMZ2

VC2 =, VTU2 + ZU*WCMZI

VC3 =, VTU3 + VTUI*QGI
C

C AERO VELOCITY

C

WAHl = WHI + WE4TI*CYP,2 - WWT3*SYR2

WAH2 = WH2 + WWT2

WAH3 = WH3 + WWTI*SYR2 + WWT3*CfR2

VAHI = VHI + VWTI*CYR2 - VWT3*SYR2

VAH2 = VH2 + VWT2
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C

VAH3 - VH3 + VWTI*SYR2 + VWT3*CYR2

WATUI =, CYT*WAHI + SYT*WAH2

WATU2 =-SYT*WAHI + CYT*WAH2

WATU3 _ WAH3 - Z

VATUI = CYT*VAHI + SYT*VAH2 + ZU*WATU2

VATU2 =-SYT*VAHI + CYT*VAH2 - ZU*WATUI

VATU3 = VAH3

WACI _ WATUI - WATU3*QGI

WAC2 = WATU2 + QDGI

WAC3 = WATU3 + WATUI*QGI

VACI - VATUI - VATU3*QGI - ZU*WAC2

VAC2 = VATU2 + ZU*WACI

VAC3 = VATU3 + VATUI*QGI

C

C TIME DERIVATIVE OF INERTIAL VELOCITY.

C

DUMI = VDHI - Z*VH2

DUM2 -- VDH2 + Z*VHI

TEMPI = WDHI - Z*WH2

TEMP2 = WDH2 + Z*WHI

C

C

C

C

C

WDTUI --CYT*TEMPI + SYT*TEMP2

WDTU2 =-SYT*TEMPI + CYT*TEMP2

WDTU3 = WDH3-ZD

VDTUI = CYT*DUMI + SYT*DUM2 + ZU*WDTU2

VDTU2 =-SYT*DUMI + CYT*DUM2 - ZU*WDTUI

D_3 = WDTUI - WTUMZ3*QDGI + Z*QDGI

DUM4 = WDTU3 +WTUMZI*QDGI

TEMP3= VDTUI - VTU3*QDGI

TEMP4= VDI_ + VTUI*QDGI

WDCI = DUM3 - DUM4*QGI

WDC2 = WDTU2 + QDDGI

WDC3 = DUM4 + DUM3*QGI

VDCI = TEMP3 - TEMP4*QGI - ZU*WDC2

VDC2 = VDTU2 + ZU*WDCI

VDC3 = TEMP4 + TEMP3*QGI

INITIALIZATIONS FOR BLADE LOOP

I=0

SYBI =-SYB

CYBI = CYB

MULTIBLADE COORDINATE AND LOADS.

QSI=0

QCI=0

QOI=O

QDSI=0

QDCI=0
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QDOI--O

QS2=O

QC2=O

Q02=0

QDS2=0

QDC2--0

QD02=O

QS3=O

QC3=O

Q03=O

QDS3=0

QDC3=0

QD03=O

FGRI=0

FGR2=O

FGR3=O

MGRI=O

MGR2=0

MGR3=0

C

C'W***************

C

C I.i

C

9001

C

C

BEGINING OF BLADE LOOP ************************

BLADE NUMBER SELECT

CONTINUE

I=I+i

SYBISV = SYBI

SYBI = SYB*CYBI + CYB*SYBI

CYBI = CYB*CYBI - SYB*SYBISV

C

C LOAD QI,QDI AND QDDI FOR BLADE I FROM

C SPACE CONTAINING Q, QD AND QDD FOR ALL BLADES.
C

CALL LOADQS (I)

C

C

C 1.2 HUB TO SHANK TRANSFOPd4ATIONS

C

C THESE TRANSFORMATIONS DEPEND ON THE BLADE AZIMUTHAL POSITION

C

C GEOMETRY

C

CYI = CY*CYBI - SY*SYBI

SYI = SY*CYBI + CY*SYBI

C

SYCBI -- SYC*CYBI + CYC*SYBI

CYCBI = CYC*CYBI - SYC*SYBI

C

C BLADE FEATHERING CONTROL ANGLE
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C
F .. C1 - C2*CYI - C3*SYI

C
C AEROVELOCITY
C

WAS1=.CYCBI*WACI- SYCBI*WAC2
WAS2=.SYCBI*WACI+ CYCBI*WAC2
WAS3= WAC3
VASI =.CYCBI*VACI- SYCBI*VAC2
VAS2:. SYCBI*VACI+ CYCBI*VAC2

VAS3 = VAC3

C

C INERTIAL VELOCITY

C

WSMZI = CYCBI*WCMZI - SYCBI*WCMZ2

WSMZ2 = SYCBI*WCMZI + CYCBI*WCMZ2

WSMZ3 = WCMZ3

VSI = CYCBI*VCI - SYCBI*VC2

VS2 = SYCBI*VCI + CYCBI*VC2

VS3 = VC3

C

C TIME DERIVATIVE OF INERTIAL VELOCITY.

C

WDSI = CYCBI*WDCI - SYCBI*WDC2

WDS2 = SYCBI*WDCI + CYCBI*WDC2

WDS3 = WDC3

VDSI = CYCBI*VDCI - SYCBI*VDC2

VDS2 = SYCBI*VDCI + CYCBI*VDC2

VDS3 = VDC3

C

C ACCELERATION TERMS FOR USE IN SECTION 1.7

C

C MANY OF THE TERMS NEEDED FOR COMPUTING THE DISTRIBUTED

C INERTIA LOADS AT EACH BLADE RADIAL STATION ARE COMMON TO

C ALL THE STATIONS_ AND ARE GENERATED OUTSIDE THE BLADE LOOP
C

US1 = VDSl + WSMZ2*VS3 - WSMZ3*VS2 + Z*VS2

US2 = VDS2 + WSMZ3*VSI - WSMZI*VS3 - Z*VSI

US3 = VDS3 + WSMZI*VS2 - WSMZ2*VSI

C

C THE PHYSICAL EQUATION FOR THE NEXT STATEMENT IS ... TERM = WSMZ3 - 2 * Z
C

TERM = WSMZ3 - 2.*Z

UII = -WSMZ3*TERM - WSMZ2*WSMZ2

U22 = -WSMZ3*TERM - WSMZI*WSMZI

U33 = -WSMZ2*WSMZ2 - WSMZI*WSMZI

UI2 = WSMZ2*WSMZI

UI3 = WSMZ3*WSMZI - Z*WSMZI

U23 = WSMZ3*WSMZ2 - Z*WSMZ2

INITIALIZE FOR RADIAL INTEGRATION OF BLADE,I.

J=0
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C

C

C

Xl=0

X2=.0

X3=0

XDI=0

XD2=0

XD3=0

XDDI=.0

XDD2=0

XDD3=0

GRII=0

GRI2=0

GRI3=0

FRII=O

FRI2=O

FRI3=O

MRII=0

MRI2=0

MRI3=0

C

C***************** BEGINING OF RADIAL LOOP

C

C 1.3 RADIAL STATION COUNTER.

C

9002 CONTINUE

J=J+l

C

C 1.4 RADIAL PHYSICAL PARAMETER BLOCKMOVE.

************************

MOVE ALL BLADE PHYSICAL

PROPERTIES FROM A COMMON MEMORY REGION TO A SEPARATE REGION

APPLICABLE FOR A SINGLE BLADE ELEMENT.

ENTITLES MOVED (AND THEIR SIZES) ARE-

R00(9),RFS,DA(3*NM),DB(3*NM),B00(3),GP(4*NM),FP(9),MP(9),

FA0(3),MB,CB

CALL MOVIT(J)

C

C

C 1.5 BLADE ELEMENT GEOMETRY

C

C MODAL ANGULAR ACCELERATION: BAX WITH RESPECT TO SAX.

C

EAI = DAII*QII + DAI2*QI2 + DAI3*QI3

EDAI = DAII*QDII + DAI2*QDI2 + DAI3*QDI3

EDDAI = DAII*QDDII + DAI2*QDDI2 + DAI3*QDDI3

EA2 = DA21*QII + DA22*QI2 + DA23*QI3

EDA2 = DA21*QDII + DA22*QDI2 + DA23*QDI3

EDDA2 = DA21*QDDII + DA22*QDDI2 + DA23*QDDI3

EA3 = DA31*QII + DA32*QI2 + DA33*QI3

EDA3 = DA31*QDII + DA32*QDI2 + DA33*QDI3
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EDDA3= DA31*QDDII + DA32*QDDI2 + DA33*QDDI3

C

C LINEAR MODAL TRANSLATIONAL BAX MOVEMENT WITH RESPECT TO SAX.

C

EBI _ DBII*QII + DBI2*QI2 + DBI3*QI3

EDBI _ DBII*QDII + DBI2*QDI2 + DBI3*QDI3

EDDBI = DBII*QDDII + DBI2*QDDI2 + DBI3*QDDI3

C

C

EB2 - DB21*QII + DB22*QI2 + DB23*QI3

EDB2 - DB21*QDII + DB22*QDI2 + DB23*QDI3

EDDB2 _ DB21*QDDII + DB22*QDDI2 + DB23*QDDI3

EB3 = DB31*QII + DB32*QI2 + DB33*QI3

EDB3 = DB31*QDII + DB32*QDI2 + DB33*QDI3

EDDB3 = DB31*QDDII + DB32*QDDI2 + DB33*QDDI3

C

C APPROXIMATIONS FOR SINE AND COSINE OF FEATHERING ANGLE, FS.

C IF "RFS" IS CONSTANT, THESE CAN BE OUTSIDE THE RADIAL LOOP.

C

FS = RFS*F - RFS*FO

FSQ = FS*FS

SFS = FS*(I.-.16667*FSQ*(I.-.05*FSQ))

CFS = i. - .5*FSQ*(I.-.08333*FSQ)

C

C TRANSFORMATION FROM SAX TO BAX CONTROL POSITION

C

R011 = R0011

R021 = R0021*CFS + R0031*SFS

R031 =-R0021*SFS + R0031*CFS

R012 = R0012

R022 = R0022*CFS + R0032*SFS

R032 =-R0022*SFS + R0032*CFS

ROI3 = R0013

R023 = R0023*CFS + R0033*SFS

R033 =-R0023*SFS + R0033*CFS

C

C TRANSFORMATION FROM SAX TO BAX FINAL POSITION, FOR USE IN AERO

C COMPUTATIONS. NOT SUITABLE FOR INERTAL LOADS, BECAUSE A LINEAR

C MODEL FOR THE ELASTIC ROTATIONS HAS BEEN USED.

C

RII = R011 + EA3*R021 - EA2*R031

R21 = -EA3*R011 + R021 + EAI*R031

R31 = EA2*R011 - EAI*R021 + R031

RI2 = R012 + EA3*R022 - EA2*R032

R22 = -EA3*R012 + R022 + EAI*R032

R32 = EA2*R012 - EAI*R022 + R032

RI3 = ROI3 + EA3*R023 - EA2*R033

R23 = -EA3*R013 + R023 + EAI*R033

R33 = EA2*R013 - EAI*R023 + R033

C

C BRL POSITION ENTITIES.

C

BPI = X1 + EBI

BP2 = X2 + EB2

BP3 = X3 + EB3
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C

C

BD11 XD1 + EDB1

BD2 = XD2 + EDB2

BD3 = XD3 + EDB3

B1 = BP1 + B001

B2 = BP2 + BOO2
B3 = BP3 + BOO3

C

C SOLVE FOR IX.

C

DUM = .5 * (EA2*EA2 + EA3*EA3)

C

IX1 = DUM*R0011

IX2 = DUM*R0012

IX3 = DUM*R0013

C

C SOLVE FOR IXD

C

TEMP5 = -EA3*EDA3 - EA2*EDA2

TEMP6 = 2.*EAI*EDA2

TEMP7 = 2.*EAI*EDA3

C

IXDI = ROOII*TEMP5 + R0021*TEMP6 + R0031*TEMP7

IXD2 = R0012*TEMP5 + R0022*TEMP6 + R0032*TEMP7

IXD3 = R0013*TEMP5 + R0023*TEMP6 + R0033*TEMP7

C

C SOLVE FOR IXDD.

C

TEMP8 = EDA3*EDA3 + .EDA2*EDA2 + EA3*EDDA3 + EA/*EDDA2

TEMP9 = - EDAI*EDA2

TEMPI0 = - EDAI*EDA3

C

IXDDI = R0011*TEMP8 + R0021*TEMP9 + R0031*TEMPI0

IXDD2 = R0012*TEMP8 + R0022*TEl_9 + R0032*TEMPI0

IXDD3 = ROOI3*TEMP8 + R0023*TEMP9 + R0033*TEMPI0

C

C 1.6 SHANK TO BLADE TRANSFO_4ATIONS

C

C AERO VELOCITY

C

C

C

C

C

C

C

C

CORRECTIONS TO THE AERO VELOCITY DUE TO INTERFERENCE EFFECTS. GET THE

AUGMENTIVE AERO VELOCITY, VAA(1), COMPUTED IN THE AIR MASS MODEL.

CALL GETVAA ( J, VAA(1) )

TEMPI1 = VASI + BDI + WAS2*B3 - WAS3*B2

TEMPI2 = VAS2 + BD2 + WAS3*BI - WASI*B3

TEMPI3 = VAS3 + BD3 + WASI*B2 - WAS2*BI

VAI = RII*TEMPII + RI2*TEMPI2 + RI3*TEMPI3 + VAAI

VA2 = R21*TEMPII + R22*TEMPI2 + R23*TEMPI3 + VAA2

VA3 = R31*TEMPll + R32*TEMPI2 + R33*TEMPI3 + VAA3
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C
C 1.7 DISTRIBUTEDINERTIALLOADS
C

TEMPI4.. 2. * (-WSMZ3*BD2+ WSMZ2*BD3+ Z*XD2)
TEMPI5_, 2. * ( WSMZ3*BDI - WSMZI*BD3 - Z*XDI )

TEMPI6 " 2. * ( WSMZI*BD2 -WSMZ2*BDI )

C

C

C

UMBRI - USI + XDDI + TEMPI4 + WDS2*B3 - WDS3*B2

@ + UII*BI + UI2*B2 + UI3*B3 - ESQ*XI

UMBR2 I US2 + XDD2 + TEMPI5 + WDS3*BI - WDSI*B3

@ + UI2*BI + U22*B2 + U23*B3 - ZSQ*X2

UMBR3 ,, US3+XDD3 + TEMPI6 + WDSI*B2 - WDS2*BI

@ + UI3*BI + U23*B2 + U33*B3

FMII - - MB*UMBRI

FMI2 =,- MB*UMBR2

FMI3 = - MB*UMBR3

C

C

C 1.8 AERO GEOMETRY

C

M2 =.VA2*RVC

M3 = VA3*RVC

C

C COMPUTE M, SAB, AND CAB BY USING M2 AND M3.

C

CALL TRIGAR (M2,M3,M,SAB,CAB)

C

C

C 1.9

C

AERODYNAMIC COEFFICIENT TABLES

CALL LOOKUP (SAB, CAB, CFA2, CFA3, CMAI )

C

C I. I0 DISTRIBUTED AIR LOADS

C

QAC -- 1481. * M * M * CB * PR

FABC2 = - QAC * CFA2

FABC3 = - QAC * CFA3

C

C TIP LOSS CORRECTION: EQUIVALENT TO AN EFFECTIVE RADIUS OF 97 %.

C

IF (TIPLOS .EQ. 0) GO TO III0

IF (J .NE. Ii) GO TO III0

FABC3 = .4 * FABC3

1110 CONTINUE

C

RRI2 = R21*CAB + R31*SAB

RRI3 = -R21*SAB + R31*CAB

RR22 = R22*CAB + R32*SAB

RR23 = -R22*SAB + R32*CAB

RR32 = R23*CAB + R33*SAB

RR33 = -R23*SAB + R33*CAB

C
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FMAI =,RRI2*FABC2+ RRI3*FABC3 - FA01

FMA2 =,RR22*FABC2 + RR23*FABC3 - FA02

FMA3 = RR32*FABC2 + RR33*FABC3 - FA03

FMA4 = QAC * CMAI * CB

C

C I. II LOADS INTEGRAND ASSEMBLER.

C

FMBI =, FMII + FMAI

FMB2 = FMI2 + FMA2

FMB3 :, FMI3 + FMA3

C

C

C

C

C

C

C

C

IGRI =, GPII*FMBI + GPI2*FMB2 + GPI3*FMB3

IGR2 ,, GP21*FMBI + GP22*FMB2 + GP23*FMB3

IGR3 =, GP34*FMA4

IFRI = FPII*FMBI + FPI2*FMB2 + FPI3*FMB3

IFR2 = FP21*FMBI + FP22*FMB2 + FP23*FMB3

IFR3 =, FP31*FMBI + FP32*FMB2 + FP33*FMB3

TEMP21 = EDDBI + 2.*Z*EDB2 - ZSQ*EBI

TEMP22 = EDDB2 - 2.*Z*EDBI - ZSQ*EB2

DUM8 = - MB*TEMP21

DUM9 = - MB*TEMP22

DUMI0= - MB*EDDB3

TEMP23 = MB*Z0*Z0*B001 + FA01

TEMP24 = MB*Z0*Z0*B002 + FA02

IMRI = MPII*FMBI + MPI2*FMB2 + MPI3*FMB3

@ + BP2*FMB3 - BP3*FMB2 - BP3*DUM9 + BP2*DUMI0

@ + X2*FA03 - X3*TEMP24

IMR2 = MP21*FMBI +'MP22*FMB2 +MP23*FMB3

@ + BP3*FMBI - BPI*FMB3 - BPI*DUMI0 + BP3*DUM8

@ + X3*TEMP23 - XI*FA03

IMR3 = MP31*FMBI +MP32*FMB2 +MP33*FMB3

@ + BPI*FMB2 - BP2*FMBI + BPI*DUM9 - BP2*DUM8

@ + XI*TEMP24 - X2*TEMP23

C

C 1.12 RADIAL SUMMATIONS.

C

Xl = Xl + DS * IX1

X2 = X2 + DS * IX2

X3 = X3 + DS * IX3

C

C

C

XDI = XDI + DS * IXDI

XD2 = XD2 + DS * IXD2

XD3 = XD3 + DS * IXD3

XDDI = XDDI + DS * IXDDI

XDD2 = XDD2 + DS * IXDD2

XDD3 = XDD3 + DS * IXDD3
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C

C

C

C

GRII = GRII + DS*IGRI

GRI2 = GRI2 + DS*IGR2

GRI3 = GRI3 + DS*IGR3

FRII _ FRII + DS*IFRI

FRI2 = FRI2 + DS*IFR2

FRI3 = FRI3 + DS*IFR3

MRII = MRII + DS*IMRI

MRI2 =, MRI2 + DS*IMR2

MRI3 I MRI3 + DS*IMR3

TEST FOR COMPLETION OF RADIAL STATIONS.

IF (J .LT. NR) GO TO 9002

C

C***************** END OF RADIAL LOOP **********************

C

m_w_

C

C

SAVE FORCES AND MOMENTS OF BLADE # 1 FOR

COMPUTATION OF ROOT LOADS IN SHANK AXES.

IF (I .GT. I) GO TO 1130

FTEMI = FRII

FTEM2 = FRI2

FTEM3 = FRI3

MTEMI = MRII

MTEM2 = MRI2

MTEM3 = MRI3

C

C

C 1.13 MODAL COORDINATE INTEGRATIONS

C

1130 CONTINUE

C

DUMII=ZP*QDII

DUMI2=ZP*QDI2

DUMI3=ZP*QDI3

C

C

DUM21=ZP*QII

DUM22=ZP*QI2

D_423=ZP*QI3

TEMP25=ZZ*QII

TEMP26=ZZ*QI2

TEMP27=ZZ*QI3
C

C GENERALIZED MODAL EXCITATIONS

C

GI 1=GRII+GV 1I*QDI I+GZQ II*TEMP 25+GZV 1I*DUMI 1

@ +GVI 2*QD 12+GZQ 12*TEMP26+GZV 12*DUMI 2

@ +GV 13*QDI3+GZQ 13*TEMP 27+GZV 13*DUMI 3+Z Z*GB01

G 12=GRI2+GV21 *QDI 1+GZQ 21*TEMP 25+GZV 2I*DUMI 1

@ +GV22*QD 12+GZQ22*TEMP26+GZV22*DUMI 2

@ +GV23*QDI3+GZQ 23*TEMP 27+GZV23*DUMI 3+ZZ*GB02
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C
GI3=GRI3+GV3I*QDII+GZQ3I*TEMP25+GZV3I*DUMII

@ +GV32*QD12+GZQ32*TEMP26+GZV32*DUMI2
@ +GV33*QDI3+GZQ33*TEMP27+GZV33*DUMI3+ZE*GB03

C
DUM24=,ZP*GII
DUM25=ZP*GI2
DUM26=ZP*GI3

C
C MODE# i ENTITIES
C

QSII = QII
QII = KQQII*QSII +KQVII*QDII +KQGII*GII

+ KQZQII*DUM21+ KQZVII*DUMII+ KQZGII*DUM24
QDII - KVQII*QSll +KVVlI*QDII +KVGII*GII

+ KVZQII*DUM21+ KVZVII*DUMII+ KVZGII*DUM24
QDDII _ GII - ESQQII*QII

C
C MODE# 2 ENTITIES
C

QSI2 = QI2
QI2 _ KQQ22*QSI2 + KQV22*QDI2 + KQG22*GI2

+ KQZQ22*DUM22+ KQZV22*DUMI2+ KQZG22*DUM25
QDI2 - KVQ22*QSI2 + KVV22*QDI2 + KVG22*GI2

+ KVZQ22*DUM22+ KVZV22*DUMI2+ KVZG22*DUM25
QDDI2= GI2 - ESQQ22*QI2

C
C MODE# 3 ENTITIES
C

QSI3 = QI3
QI3 = KQQ33*QSI3 +KQV33*QDI3 + KQG33*GI3

@ + KQZQ33*DUM23+ KQZV33*DUMI3+ KQZG33*DUM26
QDI3 = KVQ33*QSI3 + KVV33*QDI3 +KVG33*GI3

@ + KVZQ33*DUM23+ KVZV33*DUMI3+ KVZG33*DUM26
QDDI3= 0

C
C SAVEMODALSTATEVARIABLES
C

CALLSTORQS(1)
C
C
C 1.14 MULTIBLADEMODALCOmbINATIONS
C

SYBION=RNB*SYBI
CYBION=RNB*CYBI

C

C

C

QSI=QSI+QII*SYBION
QCI=QCI+QII*CYBION
Q01=Q01+QII*RNB

QDSI=QDSI+QDII*SYBION
QDCI=QDCI+QDII*CYBION
QD0I=QDOI+QDII*RNB

QS2=QS2+QI2*SYBION
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C

QC2=QC2+QI2*CYBION
QO2sQ02+QI2*RNB

QDS2=QDS2+QDI2*SYBION
QDC2=QDC2+QDI2*CYBION
QDO2=,QDO2+QDI2*RNB

QS3=QS3+QI3*SYBION
QC3=QC3+QI3*CYBION
QO3=Q03+Q13*RNB

QDS3=QDS3+QDI3*SYBION
QDC3=QDC3+QDI3*CYBION
QDO3=QDO3-_DI3*RNB

C
C 1.15 MULTIBLADELOADSCOMBINATIONS
C

C

FGRI= FGRI+ CYBION*FRII+ SYBION*FRI2
FGR2= FGR2- SYBION*FRII+ CYBION*FRI2
FGR3= FGR3+ RNB*FRI3

MGRI= MGRI+ CYBION*MRII+ SYBION*MRI2
MGR2= MGR2- SYBION*MRII+ CYBION*MRI2
MGR3= MGR3+ RNB*MRI3

C
C
C TESTFORCOMPLETIONOFBLADES.
C
* IF (I .LT. NB) GOTO9001
C
C***************** ENDOFBLADELOOP
C
C
C 1.16 GIMBALLOADSSUMMATION
C

FSQII=FQII+FZQII*ZZ
FSQ21=FQ21+FZQ21*ZZ
FSQ31=FQ31+FZQ31*ZZ

FSQDII=FQDII+FZQDII*ZP
FSQD2I=FQD2I+FZQD2I*ZP
FSQD3I--FQD3I+FZQD3I*ZP

MSQII=MQII+MZQII*ZZ
MSQ21=MQ21+MZQ21*ZZ
MSQ31=MQ31+MZQ31*ZZ

C

MSQDII=MQDII+MZQDII*ZP
MSQD21=MQD21+MZQD21*ZP
MSQD31=MQD31+MZQD31*ZP

FSQI2=FQI2+FZQI2*ZZ
FSQ22=FQ22+FZQ22*ZZ
FSQ32=FQ32+FZQ32*ZZ

C

C
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C

C

C

C

C

C

C

C

C

FSQDI2=FQDI2+FZQDI2*ZP
FSQD22=FQD22+FZQD22*ZP
FSQD32=FQD32+FZQD32"ZP

MSQI2=MQI2+MZQI2*ZZ
MSQ22=MQ22+MZQ22*ZZ
MSQ32=MQ32+MZQ32*ZZ

MSQDI2=MQDI2+MZQDI2*ZP
MSQD22=MQD22+MZQD22"ZP
MSQD32=MQD32+MZQD32*ZP

FSQI3=FQI3+FZQI3*ZZ
FSQ23=FQ23+FZQ23*ZZ
FSQ33=FQ33+FZQ33*ZZ

FSQDI3=FQDI3+FZQDI3*ZP
FSQD23=FQD23+FZQD23*ZP
FSQD33=FQD33+FZQD33*ZP

MSQI3=MQI3+MZQI3*ZZ
MSQ23=MQ23+MZQ23*ZZ
MSQ33=MQ33+MZQ33*ZZ

MSQDI3=MQDI3+MZQDI3*ZP
MSQD23=MQD23+MZQD23*ZP
MSQD33=MQD33+MZQD33*ZP

FS01= F01 + FZI*ZZ
FS02= F02 + FZ2*ZZ

FS03 = F03 + FZ3*ZZ

MSOI = M01 + MZI*ZZ

MS02 = M02 + MZ2*ZZ

MS03 = _3 + MZ3*ZZ

FGI=FGRI+FSQII*QCI+FSQ21*QSI +FSQDII*QDCI+FSQD21*QDSI

@ + FSQI2*QC2+FSQ22*QS2 +FSQDI2*QDC2+FSQD22*QDS2

@ +FSQI3*QC3+FSQ23*QS3 +FSQDI3*QDC3+FSQD23*QDS3

FG2=FGR2+FSQ21*QCI -FSQII*QSI+FSQD21*QDCI-FSQDII*QDSI

@ +FSQ22*QC2 -FSQI2*QS2+FSQD22*QDC2-FSQDI2*QDS2

@ +FSQ23*QC3 -FSQI3*QS3+FSQD23*QDC3+FSQDI3*QDS3

FG3=FGR3+FSQ31*Q01+FSQD31*QD01

@ +FSQ32*QO2+FSQD32*QD02

@ +FSQ33*QO3+FSQD33*QD03 + FS03

MGI=MGRI+MSQII*QCI+MSQ21*QSI+MSQDII*QDCI+MSQD21*QDSl

@ +MSQI2*QC2+MSQ22*QS2+MSQDI2*QDC2+MSQD22*QDS2

@ +MSQI3*QC3+MSQ23*QS3+MSQDI3*QDC3+MSQD23*QDS3

MG2=MGR2+MSQ21*QCI-MSQII*QSI+MSQD21*QDCI-MSQDII*QDSI

@ +MSQ22*QC2-MSQI2*QS2+MSQD22*QDC2-MSQDI2*QDS2

@ +MSQ23*QC3-MSQI3*QS3+MSQD23*QDC3-MSQDI3*QDS3
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MG3=MGR3+MSQ3I'Q0 I+MSQD3I*QD01
@ +MSQ32*Q02+MSQD32*QD02
@ +MSQ33"Q03+MSQD33*QD03

C

C COMPUTEROOTLOADSOF BLADE# 1 IN SHANKAXES

C
FBLDI= FTEMI+ FSQII*QIIA + FSQDII*QDIIA

@ + FSQI2*QI2A+ FSQDI2*QDI2A
@ + FSQI3*QI3A+ FSQDI3*QDI3A

FBLD2= FTEM2+ FSQ21*QIIA+ FSQD21*QDIIA
@ + FSQ22*QI2A+ FSQD22*QDI2A
@ + FSQ23*QI3A+ FSQD23*QDI3A+ FS02

FBLD3= FTEM3+ FSQ31*QIIA+ FSQD31*QDIIA
@ + FSQ32*QI2A+ FSQD32*QDI2A
@ + FSQ33*QI3A+ FSQD33*QDI3A+ FS03

MBLDI= MTEMI+ MSQII*QIIA + MSQDII*QDIIA
@ + MSQI2*QI2A+ MSQDI2*QDI2A
@ + MSQI3*QI3A+ MSQDI3*QDI3A+ MS01

MBLD2= MTEM2+ MSQ21*QIIA+ MSQD21*QDIIA
@ + MSQ22*QI2A+ MSQD22*QDI2A
@ + MSQ23*QI3A+ MSQD23*QDI3A+ MS02

MBLD3= MTEM3+ MSQ31*QIIA+ MSQD31*QDIIA
@ + MSQ32*QI2A+ MSQD32*QDI2A
@ + MSQ33*QI3A+ MSQD33*QDI3A+ MS03

C 1.17 GIMBALTOHUBTRANSFORMATIONS
C

C

C

C

C

FCUI= CYC*FGI+ SYC*FG2
FCU2=-SYC*FGI+ CYC*FG2

MCUI= CYC*MGI+SYC*MG2- ZU*FCU2
MCU2=-SYC*MGI+CYC*MG2+ ZU*FCUI

EGI = MCU2

FTI = FCUI + QGI*FG3

MTI = MCUI+ QGI*MG3+ ZU*FCU2
MT2= MCU2- ZU*FTI

FHI = CYT*FTI- SYT*FCU2
FH2= SYT*FTI+ CYT*FCU2
FH3= FG3- QGI*FCUI

MHI = CYT*MTI- SYT*MT2
MH2= SYT*MTI+ CYT*MT2
MH3= MG3- QGI*MCUI
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C
C 1.18 GIMBAL SERVO INTEGRATOR.

C

QDDGI=KGE*EGI+KGQC*QCI+KGQS*QSl

@ +KGVC*QDCI+KGVS*QDSI

C

C

C

C

C

C

C

QSGI=QGI

DUMI4=ZP*QDGI

DUMI5=ZP*QDDGI

DUMI6=ZP*QSGI

DUMIT-ZP*QDDGI

QGI=GQQ*QSGI+GQV*QDGI+GQZV*DUMI4

@ +GQA*QDDGI+GQZA*DUMI5

QDGI=GVV*QDGI+GVQ*QSGI+GVZQ*DUMI6

@ +GVA*QDDGI+GVZA*DUMI7

END THE ROTOR MODEL.
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C
C 2.0 SUPPORTSYSTEMEQUATIONS.
C

IF (TOWER.EQ. 0) GOTO 2010
C
C MODELWITHTHREENORMALMODESFORSURGE,SWAY,ANDYAW(TORSION).
C
C GENERALIZEDFORCINGFUNCTIONS
C

GSI = GSFII*FHI + GSFI3*FH3+ GSMI2*MH2
GS2= GSF22*FH2+ GSM23*MPOD
GS3= GSF32*FH2+ GSM31*MHI

C
C MODALACCELERATIONS
C

SDDI= GSI - DSII*SDI - W2SII*SI
SDD2= GS2- DS22*SD2- W2S22"$2
SDD3= GS3- DS33*SD3- W2S33"$3

C
C NUMERICALINTEGRATIONOFMODALCOORDINATES
C

SDI = SDI + SDDI*DT
SD2= SD2+ SDD2*DT
SD3= SD3+ SDD3*DT

S1 = S1+ SDI*DT
$2 = $2 + SD2*DT
$3 = $3 + SD3*DT

C
C TRANSLATIONALVELOCITY
C

VHI = VBHI+ SVlI*SDI
VH2= VBH2+ SV22*SD2+ SV23*SD3
VH3= VBH3+ SV31*SDI

C
C ROTATIONALVELOCITY
C

WHI = WBH1+ SWI3*SD3
_{2 = WBH2+ SW21*SDI
WH3= WBH3+ SW32*SD2

C
C TIMEDERIVATIVEOFTRANSLATIONALVELOCITY
C

VDHI= VDBHI+ SVII*SDDI
VDH2= VDBH2+ SV22*SDD2+ SV23*SDD3
VDH3= VDBH3+ SV31*SDDI

C
C TIMEDERIVATIVEOFROTATIONALVELOCITY
C

C
2010

C

WDHI= WDBHI+ SWI3*SDD3
WDH2= WDBH2+ SW21*SDDI
WDH3= WDBH3+ SW32*SDD2

CONTINUE
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C
C 3.0-CONTROLSYSTEM
C

IF (CONTRL.EQ. O) GOTO 3010

ZERR= SRQ- Z
ADI =,AZl * ZERR
AD2= AA21*AI - AA22*A2 + AZ2 * ZERR

AD3 I AG3*ZA + AD03

C

C NUMERICAL INTEGRATION

C

A1 ="A1 + DT * ADI

A2 = A2 + DT * AD2

A3 ="A3 + DT * AD3

C

C RESULTS

C

C1 s CAI2*A2

C2 = 0

C3 = 0

C

3010

C

CONTINUE

LGC = LAI3*A3 + LPR*PRQ + LG*ZA

C

C

C 4.0 - POWER TRAIN

C

IF (PWRTRN .EQ. 0) GO TO 4010

C

C ACCELERATIONS.

C

PDDI = -KPI2*P2 -BPII*PDI -BPI2*PD2 +PMI*MH3 +PZDI*ZD

PDD2 = -KP22*P2 +BP21*PDI -BP22*PD2 +PM2*MH3 +PZD2*ZD +PL2*LGC

C

C NUMERICAL INTEGRATION.

C

PDI = PDI + PDDI * DT

PD2 = PD2 + PDD2 * DT

P2 = P2 + PD2 * DT

C

C OUTPUTS

C

ZD = PDDI

Z = PDI

ZP = Z/Z0 - i.

ZA = PDI - PD2

C

C CO}_UTE THE MOMENT APPLIED BY THE POWER TRAIN ON THE TO_CER

C

C MPOD = .... DEPENDS ON THE SPECIFICS OF THE POWER TRAIN ....

C

4010 CONTINUE

C
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C RATERESOLVER:
C
C

SDY-- Z * DT
C
C COMPUTEAMPLITUDEERROR
C

EA = SY*SY + CY*CY - I.

C

C MAKE CORRECTION

C

CDY = CDY - .25*EA

C

C SET UP ADVANCE

C

CYSAV = CY

CY = CY * CDY- SY * SDY

SY =- SY * CDY + CYSAV*SDY

C

C

C 5.0 AIR MASS.

C

C RETARDATION VELOCITY

C

IF (RETARD .EQ. 0) GO TO 5010

C

C

C

C

C

C

ERROR FUNCTION

EVR -- i. - RV * RV * (VAH2*VAH2 + VAH3*VAH3)

CORRECTION SERVO

RV = RV + EVR*GCEV

RETARDATION

VRW = KAR * FH3 * RV * RHOR

C

5010 CONTINUE

C

C

C WINDGUST RANDOM SIGNALS

C

IF (GUSTS .EQ. 0) GO TO 5020

EQUATIONS WHICH FOLLOW USE A RANDOM NUMBER GENERATOR WHICH

APPEARS AS A WHITE NOISE SOURCE TO EACH FILTER EQUATION.

QDDGUI=RANDOM(IGNORE) -ZTGII*WGGII*QDGUI -WGGII*WGGII*QGUI

QDDGU2=RANDOM(IGNORE) -ZTG22*WGG22*QDGU2 -WGG22*WGG22*QGU2

QDDGU3=RANDOM(IGNORE) -ZTG33*WGG33*QDGU3 -WGG33*WGG33*QGU3

QDDGU4=RANDOM(IGNORE) -ZTG44*WGG44*QDGU4 -WGG44*WGG44*QGU4

QDDGU5=RANDOM(IGNORE) -ZTG55*WGG55*QDGU5 -WGG55*WGG55*QGU5

QDDGU6=RANDOM(IGNORE) -ZTG66*WGG66*QDGU6 -WGG66*WGG66*QGU6
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C

C

C

C

C

C

C

C

NUMERICAL INTEGRATION OF WINDGUST FILTERS.

QDGUI=QDGUI+QDDGUI*DT

QDGU2=QDGU2+QDDGU2*DT

QDGU3=QDGU3+QDDGU3*DT

QDGU4=QDGU4+QDDGU4*DT

QDGU5=QDGU5+QDDGU5*DT

QDGU6=QDGU6+QDDGU6*DT

QGUI=QGUI+QDGUI*DT

QGU2=QGU2+QDGU2*DT

QGU3=QGU3+QDGU3*DT

QGU4=QGU4+QDGU4*DT

QGU5=QGU5+QDGU5*DT

QGU6=QGU6+QDGU6*DT

OUTPUTS

VGI=VGUII*QDGUI

VG2=VGU22*QDGU2

VG3=VGU33*QDGU3

WGI=WGUII*QDGU4

WG2=WGU22*QDGU5

WG3=WGU33*QDGU6

5020 CONTINUE

C

C PRIMARY WIND SIGNALS

C

VWTI=VWI+VGI

VWT2=VW2+VG2

VWT3=VW3+VG3

w_/rI=WWI+WGI

W-WT2=WW2+WG2

WWT3=WW3+WG3

VWTI=VWTI+VRW

C

C

C INTERFERENCE EFFECTS:

C FOR EACH BLADE, COMPUTE THE AUGMENTIVE AERO VELOCITY DUE TO INTERFERENCE
C EFFECTS AS A FUNTION OF THE RADIAL STATION. IN THE CASE OF TOWER SHADOW

C AND WINDSHEAR EFFECTS, THIS COMPUTATION CAN BE MORE CONVENIENTLY DONE

C WITHIN THE RADIAL LOOP.

C

CALL STOVAA ( SY, CY )
C

C PASS THROUGH MODELS IS COMPLETE

C

C************ BOTTOM OF INFINITE LOOP ********************

C

GO TO 9000
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APPENDIXH

SYSTEMEQUATIONSOFTHEWINDTURBINESIMULATIONMODEL

Presented in this Appendix are the system equations which constitute
the WEST-3wind turbine simulation model, i.e., these equations are the
normalized and scaled versions of those given in Appendix G.
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C

C

C WEST-3 SYSTEM EQUATIONS: JUNE 1985

C

C

C

C INITIALIZATIONS

C

NB - 2

NR - Ii

C

C

C

Z _" ZINT

ZI>- 0

CY :, lo

SY =" 0

CDY =' •5

VHI= VBHI

VH2- VBH2

VH3= VBH3

WHI=WBHI

WH2= WBH2

WH3=WBH3

VDHI= VDBHI

VDH2= VDBH2

VDH3= VDBH3

WDHI= WI)BHI

WDH2= WDBH2

WDH3= WDBH3

VWTI " VWI

VWT2 = VW2

VWT3 = VW3

WWTI = WWI

WWT2 = WW2

WWT3 = WW3

VRW = 0

S1 = 0

$2 = 0

$3 = 0

SDI= 0

SD2 = 0

SD3= 0

MPOD=0

CI =0

A1 = 0

A2=0

A3=0

ZA = 0
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C

PD1 = Z
P2 = 0

PD2= 0
MPOW = 0

QI1A = 0

QDI1A = 0

QDDI1A = 0

QI2A = 0

QDI2A = 0

QDDI2A = 0

QI1B =' 0

QDIIB = 0

QDDIIB = 0

QI2B = 0

QDI2B = 0

QDDI2B= 0
C

C

C***************** BEGINING OF INFINITE LOOP *************************

C

9000 CONTINUE

C

C

C AEROELASTIC ROTOR MODEL

C

C ROTOR SPEED VARIABLES

C

ZP= MULT2 (Z-. 5)

ZZ = .5*ZP*ZP + ZP

ZSQ = z * z

C

C 1.2 HUB TO SHANK TRANSFORMATIONS

C

C MANY OF THE TRANSFORMATIONS ARE COMMON TO ALL THE

C BLADES, AND ARE PROCESSED OUTSIDE THE BLADE LOOP.

C

C GEOMETRY

C

SYT = SYC*CY - CYC*SY

CYT = CYC*CY + SYC*SY

C

C INERTIAL VELOCITY

C

WTUMZI = CYT*WHI + SYT*WH2

WTUMZ2 =-SYT*WHI + CYT*WH2

WTUMZ3 = WH3

VTU1 - CYT*VHI + SYT*VH2 + .4*ZU*WTUMZ2

VTU2 =-SYT*VHI + CYT*VH2 - .4*ZU*WTUMZI

VTU3 = VH3

C

WCMZI = WTUMZI - .I*WTUMZ3*QGI + MULT2 (Z*QGI)

WCMZ2 = WTUMZ2 + QDGI

WCMZ3 = WTUMZ3 + .4*WTUMZI*QGI
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VCI " VTUI - .2*VTU3*QGI - .4*ZU*WCMZ2

VC2 _"VTU2 + .4*ZU*WCMZI

VC3 _'VTU3 + .2*VTUI*QGI

C

C AERO VELOCITY

C

WAHl " .5 *WHI + WWTI*CYR2 - WWT3*SYR2

WAH2 - .5 *WH2 + WWT2

WAH3 " .25"WH3 + WWTI*SYR2 + WWT3*CYR2

VAHI " .125*VHI + VWTI*CYR2 - VWT3*SYR2

VAH2 =" .125"VH2 + VWT2

VAH3 I" .125"VH3 + VWTI*SYR2 + VWT3*CYR2

C

WATUI =" CYT*WAHI + SYT*WAH2

WATU2 m-SYT*WAHI + CYT*WAH2

WATU3 " .2 *WAH3 - Z

VATUI _" CYT*VAHI + SYT*VAH2 + .I*ZU*WATU2

VATU2 =-SYT*VAHI + CYT*VAH2 - .I*ZU*WATUI

VATU3 " VAH3

WACI " WATUI - WATU3*QGI

WAC2 " WATU2 + .5*QDGI

WAC3 ="WATU3 + .04*WATUI*QGI

VACI " VATUI - .2*VATU3*QGI - .I*ZU*WAC2

VAC2 " VATU2 + .I*ZU*WACI

VAC3 " VATU3 + .2*VATUI*QGI

C

C TIME DERIVATIVE OF INERTIAL VELOCITY.

C

DUMI =" VDHI - Z*VH2

DUM2 =, VDH2 + Z*VHI

TEMPI =" WDHI - Z*WH2

TEMP2 =" WDH2 + Z*WHI

C

C

C

C

C

WDTUI = CYT*TEMPI + SYT*TEMP2

WDTU2 =-SYT*TEMPI + CYT*TEMP2

WDTU3 = WDH3-ZD

VDTUI _ CYT*DUMI + SYT*DUM2 + .4*ZU*WDTU2
VDTU2 =-SYT*DUMI + CYT*DUM2 - .4*ZU*WDTUI

DUM3 = WDTUI - .05*WT_4Z3*QDGI + Z*QDGI

DUM4 = WDTU3 + .2 *WTUMZI*QDGI

TEMP3 = VDTUI - .I*VTU3*QDGI

TEMP4= VDH3 + .I*VTUI*QDGI

WDCI = DUM3 - .I*DUM4*QGI

WDC2 = WDTU2 + .5*QDDGI

WDC3 = DUM4 + .4*DUM3*QGI

VDCI _ TEMP3 - .2*TEMP4*QGI - .4*ZU*WDC2

VDC2 = VDTU2 + .4*ZU*WDCI

VDC3 = TEMP4 + .2*TEMP3*QGI

INITIALIZATIONS FOR BLADE LOOP

I_0

H-4



C

C

LOOPI= 0

SYBI =-SYB
CYBI =. CYB

MULTIBLADE COORDINATE AND LOADS.

QSI=0

QCI=0

QO1=O
QDSI=0

QDCI=O

QD01,.O

Qs2=0

QC2=0

Q02=0

QDS2=O

QDC2=0

QD02=0

Qs3=0

Qc3=o
QO3=O

QDS3=0

QDC3=0

QD03=0

FGRI=0

FGR2=0

FGR3=0

C

MGRI=0

MGR2 =0

MGR3=0

C

C*****************

C

C I.I

C

9001 CONTINUE

C

BEGINING OF BLADE LOOP ************************

BLADE NUMBER SELECT

I= I+I

LOOPI = LOOPI + .25

SYBISV = SYBI

SYBI = SYB*CYBI + CYB*SYBI

CYBI = CYB*CYBI - SYB*SYBISV
C

C LOAD QI,QDI AND QDDI FOR BLADE I FROM

C SPACE CONTAINING Q, QD AND QDD FOR ALL BLADES.
C

C CALL LOADQS(1)
C

C THE FOLLOWING SEQUENCE IMPLEMENTS THE "LOADQS" FUNCTION FOR 2 BLADES
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C

C

201 IF (I .GT. I) GO TO 202

QII=QIIA

QDII=QDIIA

QDDII=QDDIIA

QI2=QI2A

QDI2=QDI2A

QDDI2=,QDDI2A

QI3=QI3A

QDI3=QDI3A

QDDI3_QDDI3A
GO TO 203

202 CONTINUE

QII=QIIB

QDII=QDIIB

QDDII==QDDIIB

QI2--QI2B

QDI2=QDI2B

QDDI2=QDDI2B

QI3--QI3B

QDI3=QDI3B

QDDI3=QDDI3B

203 CONTINUE

C

C

C 1.2 HUB TO SHANK TRANSFORMATIONS

C

C THESE TRANSFORMATIONS DEPEND ON THE BLADE AZIMUTHAL POSITION

C

C GEOMETRY

C

CYI -- CY*CYBI - SY*SYBI

SYI = SY*CYBI + CY*SYBI

C

SYCBI = SYC*CYBI + CYC*SYBI

CYCBI = CYC*CYBI - SYC*SYBI

C

C BLADE FEATHERING CONTROL ANGLE

C

F = C1 - .I*C2*CYI - .I*C3*SYI

C

C AERO VELOCITY

C

WASI _ CYCBI*WACI - SYCBI*WAC2

WAS2 =, SYCBI*WACI + CYCBI*WAC2

WAS3 = WAC3

VASI = CYCBI*VACI - SYCBI*VAC2

VAS2 = SYCBI*VACI + CYCBI*VAC2

VAS3 = VAC3

C

C INERTIAL VELOCITY

C

WSMZI =, CYCBI*WCMZI - SYCBI*WCMZ2
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WSMZ2:, SYCBI*WCMZI+ CYCBI*WCMZ2
WSMZ3:. WCME3
VSI :. CYCBI*VCI- SYCBI*VC2
VS2., SYCBI*VCI+ CYCBI*VC2
VS3=, VC3

C

C TIME DERIVATIVE OF INERTIAL VELOCITY.

C

WDSI = CYCBI*WDCI - SYCBI*WDC2

WDS2 :. SYCBI*WDCl + CYCBI*WDC2

WDS3 = WDC3

VDSI =, CYCBI*VDCI - SYCBI*VDC2

VDS2 = SYCBI*VDCI + CYCBI*VDC2

VDS3 = VDC3

C

C ACCELERATION TERMS FOR USE IN SECTION 1.7

C

C MANY OF THE TERMS NEEDED FOR COMPUTING THE DISTRIBUTED

C INERTIA LOADS AT EACH BLADE RADIAL STATION ARE COMMON TO

C ALL THE STATIONS j AND ARE GENERATED OUTSIDE THE BLADE LOOP

C

US1 -- VDSI +. I *WSMZ2*VS3 -.05*WSMZ3*VS2 + Z*VS2

US2 =, VDS2 +.05*WSMZ3*VSI -.I *WSMZI*VS3 -Z*VSI

US3 = VDS3 +.I* WSMZI*VS2 -.i *WSMZ2*VSI

C

C THE PHYSICAL EQUATION FOR THE NEXT STATEMENT IS ... TERM = WSMZ3 - 2 * Z
C

TERM = .025*WSMZ3 - Z

UII = -WSMZ3*TERM - .I*WSMZ2*WSMZ2

U22 = -WSMZ3*TERM - .I*WSMZI*WSMZI

U33 = -WSMZ2*WSMZ2 - WSMZI*WSMZI

C

C

C

C

C

UI2 = WSMZ2*WSMZI

UI3 = .05*WSMZ3*WSMZI - Z*WSMZI

U23 = .05*WSMZ3*WSMZ2 - Z*WSMZ2

INITIALIZE FOR RADIAL INTEGRATION OF BLADE,I.

J--O

XI=0

X2=0

X3=0

XDI=O

XD2=0

XD3=O

XDDI=0

XDD2=O

XDD3=0

GRII=0

GRI2=0

GRI3=0

FRII=0
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C

FRI2=0
FRI3=0

MRII=0
MRI2=0
MRI3--0

C
C***************** BEGININGOFRADIALLOOP
C
C 1.3 RADIALSTATIONCOUNTER.
C
9002 CONTINUE

J,,J+l
C
C 1.4 RADIALPHYSICALPARAMETERBLOCKMOVE.
C
C
C
C
C
C
C
C
C
C

MOVEALL BLADEPHYSICAL
PROPERTIESFROMA COMMONMEMORYREGIONTOA SEPARATEREGION
APPLICABLEFORA SINGLEBLADEELEMENT.

ENTITLESMOVED(ANDTHEIRSIZES) ARE-

R00(9),RFS,DA(3*NM),DB(3*NM),B00(3),GP(4*NM),FP(9),MP(9),
FA0(3),MB,CB

CALLMOVIT(J)

***************************************************************************

C

C THE FOLLOWING SEQUENCE IMPLEMENTS THE "MOVIT" FUNCTION.

C

C THIS SEQUENCE IS SET UP FOR AN II RADIAL STATION SITUATION.
C

IF(J.GT.I)GO TO 302

R0011=RO011A

RO021=R0021A

RO031=R0031A

RO012=RO012A

RO022=R0022A

R0032=R0032A

RO013=RO013A

RO023=R0023A

RO033=R0033A

DAII=DAIIA

DA21=DA21A

DA31=DA31A

DAI2=DAI2A

DA22=DA22A

DA32=DA32A

DAI3=DAI3A

DA23=DA23A

DA33=DA33A

DBII=DBIIA

DB21=DB21A

DB31=DB31A

C

301
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C

C

C

C

C

C

302

DBI2=DBI2A

DB22=DB22A

DB32=DB32A

DBI3=DBI3A

DB23=DB23A

DB33=DB33A

GPII=GPIIA

GPI2=GPI2A

GPI3=GPI3A

GP21=GP21A

GP22=GP22A

GP23=GP23A

GP34=GP34A

FPII=FPIIA

FP21=FP21A

FP31=FP31A

FPI2=FPI2A

FP22=FP22A

FP32=FP32A

FPI3=FPI3A

FP23=FP23A

FP33=FP33A

MPII=MPIIA

MP21=MP21A

MP31=MP31A

MPI2=MPI2A

MP22=MP22A

MP32=MP32A

MPI3=MPI3A

MP23=MP23A

MP33=MP33A

B001=B001A

BOO2=BO02A

BOO3=B003A

FAOI=FA01A

FAO2=FA02A

FA03=FA03A

RFS=RFSA

MB=MBA

CB=CBA

S = SA

DS = DSA

GO TO 312

IF(J.GT.2)GO TO 303

ROOII=R0011B
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DS="DSB
GOTO312

C
303 IF(J.GT.3)GO TO 304

R001I=R001IC

DS= DSC

GO TO 312

C

304 IF(J.GT.4)GO TO 305

RO011=R0011D

DS = DSD

GO TO 312

C

305 IF(J.GT.5)GO TO 306

R0011=R001 IE

DS = DSE

GO TO 312

C

306 IF(J.GT.6)GO TO 307

R0011=R001 IF

DS = DSF

GO TO 312

C

307 IF(J.GT.7)GO TO 308

R0011=R0011G

• •

DS = DSG

GO TO 312

C

308 IF(J.GT.8)GO TO 309

R001 I=R001 IH

DS = DSH

GO TO 312

C

309 IF(J.GT.9)GO TO 310

R0011=R001 II
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C

C

C

DS= DSI
GO TO 312

310 IF(J.GT.10)GO TO 311

ROOII=RO011J

DS = DSJ

GO TO 312

311 IF(J.GT. II)GO TO 312

ROOII=ROOIIK

DS = DSK

312 CONTINUE

C

C 1.5 BLADE ELEMENT GEOMETRY

C

C MODAL

C

C

C

ANGULAR ACCELERATION: BAX WITH RESPECT TO SAX.

EAI = DAII*QII + DAI2*QI2 + DAI3*QI3

EDAI = DAII*QDII + DAI2*QDI2 + DAI3*QDI3

EDDAI = DAII*QDDII + DAI2*QDDI2 + DAI3*QDDI3

EA2 = DA21*QII + DA22*QI2 + DA23*QI3

EDA2 = DA21*QDII + DA22*QDI2 + DA23*QDI3

EDDA2 = DA21*QDDII + DA22*QDDI2 + DA23*QDDI3

EA3 = DA31*QII +

EDA3 = DA31*QDII +

EDDA3 = DA31*QDDII +
C

C LINEAR MODAL TRANSLATIONAL

C

EBI = DBII*QII +

EDBI = DBII*QDII +

EDDBI = DBII*QDDII +
C

DA32"Q12 + DA33*QI3

DA32*QDI2 + DA33*QDI3

DA32*QDDI2 + DA33*QDDI3

C

BAX MOVEMENT WITH RESPECT TO SAX.

DBI2*QI2 + DBI3*QI3

DBI2*QDI2 + DBI3*QDI3

DBI2*QDDI2 + DBI3*QDDI3

EB2 = DB21*QII + DB22*QI2 + DB23*QI3

EDB2 = DB21*QDII + DB22*QDI2 + DB23*QDI3

EDDB2 = DB21*QDDII + DB22*QDDI2 + DB23*QDDI3

EB3 = DB31*QII + DB32*QI2 + DB33*QI3

EDB3 = DB31*QDII + DB32*QDI2 + DB33*QDI3

EDDB3 = DB31*QDDII + DB32*QDDI2 + DB33*QDDI3
C

C APPROXIMATIONS FOR SINE AND COSINE OF FEATHERING ANGLE, FS.

C IF "RFS" IS CONSTANT, THESE CAN BE OUTSIDE THE RADIAL LOOP.
C
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FS = RFS*F-RFS*F0

FSQ = FS*FS

SFS = MULT2 (FS*(I.-.672*FSQ*(I.-.2*FSQ)) )

CFS = I. - MULT2(FSQ*(I.-.3333*FSQ))

C

C TRA_ORMATT_ _RNM _Y Tn RAY _n_o_T _T_T_T

C

ROll = R0011

R021 = R0021*CFS + R0031*SFS

R031 = -RO021*SFS + R0031*CFS

ROI2 = RO012

R022 - .5*ROO22*CFS +.5*R0032*SFS

R032 = -RO022*SFS + ROO32*CFS

ROI3 = R0013

R023 = ROO23*CFS + RO033*SFS

R033 =-.5*ROO23*SFS +.5*ROO33*CFS

C

C TRANSFORMATION FROM SAX TO BAX FINAL POSITION, FOR USE IN AERO

C COMPUTATIONS. NOT SUITABLE FOR INERTAL LOADS, BECAUSE A LINEAR

C MODEL FOR THE ELASTIC ROTATIONS HAS BEEN USED.

C

RII = ROll + .25*EA3*R021 - .25*EA2*R031

R21 = -EA3*ROII + R021 + .5 *EAI*R031

R31 = EA2*ROII - .5 *EAI*R021 + R031

RI2 = ROI2 +MULT2(EA3*R022)- EA2*R032

1122 =-.125*EA3*ROI2 + R022 + .25*EAI*R032

R32 = .25 *EA2*R012 -

RI3 = ROI3 +

R23 =-.25 *EA3*R013 +

R33 = .125*EA2*ROI3 -

C

C BRL POSITION ENTITIES.

C

BPI = .25 *XI + EBI

BP2 = .125"X2 + EB2

BP3 = .125"X3 + EB3

BDI = .25 *XDI + EDBI

BD2 = .125"XD2 + EDB2

BD3 = .125"XD3 + EDB3

B1 =.I*BPI + B001

B2 -- BP2 + B002

B3 = BP3 + B003

C

C SOLVE FOR IX.

C

DUM = .5 * (EA2*EA2 + EA3*EA3)

IX1 = DUM*R0011

IX2 = DUM*R0012

IX3 = DUM*R0013

C

C SOLVE FOR IXD

C

EAI*R022 + R032

EA3*R023 -MULT2(EA2*R033)

R023 + EAI*R033

.25*EA1*R023 + R033
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TEMPS= -EA3*EDA3 - EA2*EDA2

C

C THE PHYSICAL EQUATIONS FOR THE NEXT TWO STATEMENTS ARE

C

TEMP6 = 2 * EAt * EDA2

TEMP7 = 2 * EAI * EDA3

C

TEMP6 = EAI*EDA2

TEMP7 =. EAI*EDA3

IXDI = RO011*TEMP5 + R0021*TEMP6 + R0031*TEMP7

IXD2 = .25*ROOI2*TEMP5 + RO022*TEMP6 + R0032*TEMP7

IXD3 = .25*R0013*TEMP5 + RO023*TEMP6 + RO033*TEMP7

C

C SOLVE FOR IXDD.

C

C

DUM = MULT2 ( .625*(EA3*EDDA3 +EA2*EDDA2) )

TEMP8 = .5*EDA3*EDA3 + .5*EDA2*EDA2 + DUM

TEMP9 = - EDAI*EDA2

TEMPI0 = - EDAI*EDA3

IXDDI = R0011*TEMP8 + .25*R0021*TEMP9 + .25*R0031*TEMPI0

IXDD2 = R0012*TEMP8 + R0022*TEMP9 + R0032*TEMPI0

IXDD3 = ROOI3*TEMP8 + R0023*TEMP9 + R0033*TEMPI0

C

C 1.6 SHANK TO BLADE TRANSFORMATIONS

C

C AERO VELOCITY

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CORRECTIONS TO THE AERO VELOCITY DUE TO INTERFERENCE EFFECTS.

NORMALLY THESE ARE PART OF THE "AIR MASS" SUBSYSTEM. FOR CONVENIENCE,

THESE HAVE INCLUDED IN THE ROTOR MODEL. NOTE THAT INSTEAD OF COMPUTING

AN AUGMENTIVE AERO VELOCITY, VAA(1), FOR CORRECTING VA(1), THE ACTUAL

AERO VELOCITY, VACT(1) IS COMPUTED IN THE FOLLOWING:

VACTI=VASI

VACT2=VAS2

VACT3=VAS3

INTRODUCE TOWER SHADOW AND WIND SHEAR EFFECTS ON AIR VELOCITY.

IF THE SHADOW REGION IS DEFINED AS A SECTOR (I.E. AN ANGLE),

THE SHADOW EFFECT CAN BE INTRODUCED OUTSIDE THE RADIAL LOOP.

IN GENERAL, USE FUNCTION SUBPROGRAMS "SHADOW" AND "SHEAR" TO GET

THE MODULATION COEFFICIENTS, SHDFAC AND SHRFAC BY TABLE LOOK-UP.

SHD = SHADOW ( S, SYI, CYI ) : ZERO => NO SHADOW EFFECT.

SHR = SHEAR ( S, SYI, CYI ) : ZERO => NO SHEAR EFFECT.

HERE, THE MODULATION COEFFICIENTS ARE COMPUTED BY EQUATIONS.

TOWER SHADOW => 28 PER CENT WITHIN A SECTOR OF 30 DEGREES :

( SHADOW = .28, AND SHDSEC = COS (15 DEG) ).

WIND SHEAR => 15 PER CENT : ( SHEAR = .15 ).
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C
C

C

SHR= SHEAR* S * CYI
IF (SHR.EQ. 0) GOTO 1610
VACT3= VACT3 - SHR * VACT3

1 _ 1 _ _T_T_T_

C

C TO AVOID OVER/UNDER FLOWS AN ARBITRARY FACTOR IS USED IN "DUM= ... "

C

DUM = .4*CYI - .4*SHDSEC

IF (DUM .LT. 0 ) GO TO 1620

SHD = SHADOW

IF (SHD .EQ. 0) GO TO 1620

VACT3 = (i. - SHD) * VACT3

C

1620 CONTINUE

C

C THE ACTUAL AERO VELOCITY SEEN BY THE BLADE IS VACT(1).

C

TEMPI1 = VACTI + .5*BDI + .2*WAS2*B3 - WAS3*B2

TEMPI2 = .2*VACT2 + .2*BD2 + WAS3*BI -. 04*WASI*B3

TEMPI3 = VACT3 + BD3 + .2*WASI*B2 - WAS2*BI

C

C

TEMP = MULTS(.625*R32*TEMPI2)

VAI = .4*RII*TEMPII + RI2 *TEMPI2 + .2"R13 *TEMPI3

VA2 = .I*R21*TEMPII +MULT2(R22*TEMPI2) + .2"R23 *TEMPI3

VA3 = .5*R31*TEMPII + TEMP -hMULT2(R33 *TEMPI3)

C

C

C 1.7 DISTRIBUTED INERTIAL LOADS

C

C THE PHYSICAL EQUATIONS FOR THE NEXT THREE STATEMENTS ARE,

C

C TEMPI4 = 2 * ( -WSMZ3*BD2 + WSMZ2*BD3 + Z*XD2 )

C TEMPI5 = 2 * ( WSMZ3*BDI - WSMZI*BD3 - Z*XDI )

C TEMPI6 = 2 * ( WSMZI*BD2 - WSMZ2*BDI )

C

C

C

C

TEMPI4 =-.8*WSMZ3*BD2 + MULT2(.8*WSMZ2*BD3 + Z*XD2)

TEMPI5 = .4*WSMZ3*BDI - MULT2(.8*WSMZI*BD3 + Z*XDI)

TEMPI6 = .4* WSMZI*BD2 - .2*WSMZ2*BDI

UMBRI = US1 + XDDI + TEMPI4 +.8*WDS2*B3 - .4*WDS3*B2

@ + MULT4(UII*BI) +.8*(.I*UI2*B2 + UI3*B3) - ZSQ*XI

UMBR2 = US2 + XDD2 + TEMPI5 + MULT2(WDS3*BI) - .8*WDSI*B3

@ +.4*UI2*BI + .8*(U22*B2 + U23*B3) - ZSQ*X2

UMBR3 = .25*(US3+XDD3) + TEMPI6 + .2*WDSI*B2 - WDS2*BI

@ + UI3*BI + .2*(U23*B2 + .I*U33*B3)

FMII = - MULT2 (MB*UMBRI)

FMI2 = - MB*UMBR2
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C
C
C 1.8
C

C
C
C 1.9
C

FMI3 =. - MULT2(. 8*MB*UMBR3)

AEROGEOMETRY

M2 =MULT2(VA2*RVC)
M3 = MULT2(VA3*RVC)

AERODYNAMIC COEFFICIENT TABLES

C I.I0 DISTRIBUTED AIR LOADS

C

C.... SIMPLIFIED AERO MODEL, WITH THE FOLLOWING ASSUMPTIONS:

C

C LIFT COEFFICIENT ....... CFA3 = 6

C DRAG COEFFICIENT ....... CFA2 = 0.01

C INFLOW ANGLE = TEMPI3/VA2 = MNOR/M2

C ANGLE OF ATTACK ........ M3/M2

C BLADE PRECONE ANGLE .... 0.12 RADIANS

C

C THE PHYSICAL EQUATIONS ARE,

C

C LIFT = 8886 *M2 * M3 * CB * PR

C LIFTX = 8886 * M3 * MNOR * CB * PR; LIFT COMPONENT PRODUCING TORQUE.

C DRAG = 14.81 * M2 * M2 * CB * PR

C

C

MNOR = MULT2 (TEMP 13*RVC)

LIFT = MULT4 ( .7075 * MULT2(M2*CB) * M3 * PR )

LIFTX = MULT4 ( .7075 * MNOR * M3 * PR * CB )

C

C TIP LOSS CORRECTION: EQUIVALENT TO AN EFFECTIVE RADIUS OF 97 %.
C

IF (TIPLOS .EQ. 0) GO TO Iii0

IF (J .NE. ii) GO TO III0

LIFT = .4 * LIFT

LIFTX = .4 * LIFTX

IIi0 CONTINUE

C

DRAG = .168 * M2*M2*PR*CB

C

FMAI -- .6 * LIFT - FA01

FMA2 --- DRAG + LIFTX - FA02

FMA3 = - LIFT - FA03

FMA4 = .2 * QAC * CMA * CB

C

C I.ii LOADS INTEGRAND ASSEMBLER.

C

FMBI = FMII + FMAI

FMB2 = FMI2 + FMA2

FMB3 = FMI3 + FMA3

IGRI = GPII*FMBI + GPI2*FMB2 + GPI3*FMB3
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C

IGR2 = GP21*FMBI+ GP22*FMB2+ GP23*FMB3
IGR3 = GP34*FMA4

IFRI = FPII*FMBI + FPI2*FMB2 + FPI3*FMB3

IFR2 = FP21*FMBI + FP22*FMB2 + FP23*FMB3

IFR3 = FP31*FMBI + FP32*FMB2 +MULT2(FP33*FMB3)

C

C

C THE PHYSICAL EQUATIONS FOR THE NEXT TWO STATEMENTS ARE,

C

C TEMP21 = EDDBI + 2.*Z*EDB2 - ZSQ*EBI

C TEMP22 = EDDB2 - 2.*Z*EDBI - ZSQ*EB2

C

C

TEMP21 = .5*EDDBI + .8*Z*EDB2 - .2*ZSQ*EBI

TEMP22 = EDDB2 - .4*Z*EDBI - .4*ZSQ*EB2

DUM8 = -MULT4 (MB*TEMP21)

DUM9 = -MULT4 (MB*TEMP22)

DUMIO_ -MULT4 (MB*EDDB3)

C

C THE MB APPEARING IN THE NEXT TWO STATEMENTS IS ACTUALLY "MB*Z0*Z0"

C

TEMP23 = MB*B001 + .05*FA01

TEMP24 = MB*B002 + .5 *FA02

IMRI = MPII*FMBI + MPI2*FMB2 + MPI3*FMB3

@ + .4 *(.5*BP2*FMB3 - .2*BP3*FMB2 - BP3*DUM9 + BP2*DUMI0)

@ + .025*(X2*FA03 - .8*X3*TEMP24)

IMR2 = MP21*FMBI +MP22*FMB2 +MULT2(MP23*FMB3)

@ + .5 *(.2*BP3*FMBI - .5*BPI*FMB3 - BPI*DUMI0) + BP3*DUM8

@ + .25*(X3*TEMP23-.25*XI*FA03)

IMR3 --MP31*FMBI + MP32*FMB2 + MP33*FMB3

@ + .5 *(.2*BPI*FMB2 - .2*BP2*FMBI + BPI*DUM9) - BP2*DUM8

@ + .25*(.2*XI*TEMP24 - X2*TEMP23)

C

C 1.12 RADIAL SUMMATIONS.

C

XI --X1 + DS * IX1

X2 = X2 + DS * IX2

X3 = X3 + DS * IX3

C

XDI = XDI + DS * IXDI

XD2 = XD2 + DS * IXD2

XD3 = XD3 + DS * IXD3

XDDI = XDDI + DS * IXDDI

XDD2 = XDD2 + DS * IXDD2

XDD3 = XDD3 + DS * IXDD3

GRII = GRII + DS*IGRI

GRI2 = GRI2 + DS*IGR2

GRI3 = GRI3 + DS*IGR3
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C

C--

C

FRII ,,FRII + DS*IFRI

FRI2 =,FRI2 + DS*IFR2

FRI3 = FRI3 + DS*IFR3

MRII =,MRII + DS*IMRI

MRI2 =, MRI2 + DS*IMR2

MRI3 =,MRI3 + DS*IMR3

RADIAL SWEEP DELAY LOOP

9005 CONTINUE

DELAYI = DELAY1 - DELAY2

IF (DELAYI .GT. 0) GO TO 9005

DELAY1 = DELAY3

C

C

C

C

IF (J .LT° NR) GO TO 9002

C

C***************** END OF RADIAL LOOP

C

C CLEAN UP THE RADIAL SUMMATIONS.

C

X2 = .5 * X2

X3 = .5 * X3

C

C

TEST FOR COMPLETION OF RADIAL STATIONS.

XD2 = MULT2(XD2)

XD3 = MULT2(XD3)

C

C

C

C

XDDI =MULT2(XDDI)

FRI3 = .i * FRI3

**********************

MRII = .25 * MRII

MRI2 -- .I * MRI2

MRI3 = .4 * MRI3

SAVE FORCES AND MOMENTS OF BLADE # 1 FOR

COMPUTATION OF ROOT LOAD& IN SHANK AXES.

IF (I .GT. I) GO TO 1130

FTEMI = FRII

FTEM2 = FRI2

FTEM3 = FRI3

MTEMI = MRII

MTEM2 = MRI2

MTEM3 = MRI3

C

C

C 1.13 MODAL COORDINATE INTEGRATIONS

C

1130 CONTINUE

C
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C

DUMII=ZP*QDII
DUMI2=ZP*QDI2
DUMI3=ZP*QDI3

DUM21=ZP*QII
DUM22=ZP*QI2

TEMP25=ZZ*QII
TEMP26=ZZ*QI2
TEMP27=ZZ*QI3

C

C GENERALIZED MODAL EXCITATIONS

C

GII=GRII+GVl I*QDI I+GZQ iI*TEMP 25+GZV iI*DUMI I

@ +GV 12*QD 12+GZQ 12*TEMP 26+GZV 12*DUMI 2

@ +GVl 3*QDI3+GZQ 13*TEMP 27+GEV 13*DUMI 3+ZZ*GBO i
C

C

C

GI2=GRI2+GV2 I*QDII+GZQ 2 I*TEMP 25+GZV2 I*DUMI 1

@ +GV22*QDI2+GZQ22*TEMP26+GZV22*DUMI 2

@ +GV23*QDI3+GZQ 23*TEMP 27+GZV23*DUMI 3+ZZ*GB02

GI3=GRI3+GV3 I*QDI I+GZQ 3 I*TEMP 25+GZV 3I*DUMI 1

@ +GV 32 *QD 12+GZQ 32 *TEMP 26+GZV 32*DUMI 2

@ +GV33*QDI3+GZQ 33*TEMP 27+GZV33*DUMI 3+ZZ*GB03

DUM24=ZP*GII

DUM25=ZP*GI2

DUM26=ZP*GI3

C

C MODE # 1 ENTITIES

C

@

@

QSII = QII

QII = KQQII*QSII + KQVII*QDII + KQGII*GII

+ KQZQII*DUM21 + KQZVlI*DUMII + KQZGII*DUM24

QDII = KVQII*QSll + KVVII*QDII + KVGII*GII

+ KVZQII*DUM21 + KVZVII*DUMII + KVZGII*DUM24

QDDII = .8*GII - ESQQII*QII

c

c MODE # 2 ENTITIES

C

QsI2 = QI2

QI2 = KQQ22*QSI2 + KQV22*QDI2 + KQG22*GI2

+ KQZQ22*DUM22 + KQZV22*DUMI2 + KQZG22*DUM25

QDI2 = KVQ22*QSI2 + KVV22*QDI2 +KVG22*GI2

+ KVZQ22*DUM22 + KVZV22*DUMI2 + KVZG22*DUM25

QDDI2 = MULT2 (.4"G12 - ESQQ22*QI2)
C

C MODE # 3 ENTITIES

C

QSI3

QI3
@

QDI3
@

= QI3

= KQQ33*QSI3 +KQV33*QDI3 +KQG33*GI3

+ KQZQ33*DUM23 + KQZV33*DUMI3 + KQZG33*DUM26

= KVQ33*QSI3 + KVV33*QDI3 +KVG33*GI3
+ KVZQ33*DUM23 + KVZV33*DUMI3 + KVZG33*DUM26
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QDDI3" 0
C

C SAVE MODAL STATE VARIABLES

C

C CALL STORQS (I)

C

C THE FOLLOWING SEQUENCE IMPLEMENTS THE "STORQS" FUNCTION FOR 2 BLADES

C

C ALSO SAVE THE GENERALISED FORCING FUNCTION FOR BLADE # 1

C

501

C

C

IF (I .GT. I) GO TO 502

QIIA=QII

QDIIA=QDII

QDDIIA=QDDII

QI2A,,QI2

QDI2A=QDI2

QDDI2A=QDDI2

QI3A=QI3

QDI3A=QDI3

QDDI3A=QDDI3

GO TO 503

5O2 CONTINUE

QIIB=QII

QDIIB=QDII

QDDIIB=QDDII

QI2B=QI2

QDI2B=QDI2

QDDI2B=QDDI2

QI3B=QI3

QDI3B=QDI3

QDDI3B=QDDI3

503 CONTINUE

C 1.14 MULTIBLADE MODAL COMBINATIONS

C

SYBION=RNB*SYBI

CYBION=RNB*CYBI

C

QSI=QSI+QII*SYBION

QCI=QCI+QII*CYBION

QOI=Q0 I+Q II*RNB

QDSI=QDSI+QDII*SYBION

QDCI=QDCI+QDII*CYBION

QD01=QDOI+QDII*RNB

QS2=QS2+QI2*SYBION

QC2=QC2+QI2*CYBION

Q02=Q02+QI2*RNB

QDS2=QDS2+QDI2*SYBION

QDC2=QDC2+QDI2*CYBION

QD02=QDO2+QDI2*RNB
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C

QS3,.QS3+QI3*SYBION
QC3..QC3+QI3*CYBION
Q03=Q03+QI3*RNB

QDS3=QDS3+QDI3*SYBION
QDC3-QDC3+QDI3_CfBION
QD03=QDO3+QDI3*RNB

C

C 1.15 MULTIBLADE LOADS COMBINATIONS

C

FGRI =, FGRI + CYBION*FRII + SYBION*FRI2

FGR2 - FGR2 - SYBION*FRII + CYBION*FRI2

FGR3 =, FGR3 + RNB*FRI3

MGRI ,,MGRI + CYBION*MRII + SYBION*MRI2

MGR2 = MGR2 - SYBION*MRII + CYBION*MRI2

MGR3 = MGR3 + RNB*MRI3

TEST FOR COMPLETION OF BLADES.

IF (I .LT. NB) GO TO 9001

C***************** END OF BLADE LOOP ***********************

C

C

C 1.16 GIMBAL LOADS SUMMATION

C

FSQII=FQII+FZQII*ZZ

FSQ21=FQ21+FZQ21*ZZ

FSQ31=FQ31+FZQ31*ZZ

C

C

C

C

FSQDI I=FQDI I+FZQDI I*ZP

FSQD2 I=FQD2 I+FZQD2 I*ZP

FSQD3 I=FQD3 I+FZQD3 I*ZP

MSQII=MQII+MZQII*ZZ

MSQ21=MQ21+MZQ21*ZZ

MSQ31=MQ31+MZQ31*ZZ

MSQDII=MQDII+MZQDII*ZP

MSQD21=MQD21+MZQD21*ZP

MSQD31=MQD31+MZQD31*ZP

FSQI2=FQI2+FZQI2*ZZ

FSQ22=FQ22+FZQ22*ZZ

FSQ32=FQ32+FZQ32*ZZ

FSQDI2=FQDI2+FZQDI2*ZP

FSQD22=FQD22+FZQD22*ZP

FSQD32=FQD32+FZQD32*ZP

MSQI2=MQI2+MZQI2*ZZ

MSQ22=MQ22+MZQ22*ZZ
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C

C

C

C

C

MSQ32=MQ32+MZQ32*ZZ

MSQDI2=MQDI 2+MEQDI 2*ZP

MSQD22=MQD22+MZQD22*ZP

MSQD32=MQ D32+MZQ D32*Z'P

FSQI3=FQI3+FZQI3*ZZ

FSQ23=FQ23+FZQ23*ZZ

FSQ33-FQ33+FZQ33*ZZ

F SQDI 3=FQDI 3+FZQDI 3*ZP

FSQD23=FQD23+FZQD23*ZP

FSQD33= FQD33+FZQD33*ZP

MSQI3=MQI3+MZQI3*ZZ

MSQ23=MQ23+MZQ23*ZZ

MSQ33=MQ33+MZQ33*ZZ

MSQDI3=MQDI3+MZQDI3*ZP

MSQD23=MQD23+MZQD23*ZP

MSQD33=MQD33+MZQD33*ZP

FS01 = F01 +MULT2(FZI*ZZ)

FS02 = F02 + FZ2*ZZ

FS03 = F03 + FZ3*ZE

MS01 = MOI + MZI*ZZ

MS02 = M02 + MZ2*ZZ

MS03 = M03 + MZ3*ZZ

FGI=FGRI+FSQII*QCI+FSQ21*QSI +FSQDII*QDCI+FSQD21*QDSI

@ + FSQI2*QC2+MULT4(FSQ22*QS2)+FSQDI2*QDC2+FSQD22*QDS2

@ +FSQI3*QC3+FSQ23*QS3 +FSQDI3*QDC3+FSQD23*QDS3

FG2=FGR2+FSQ21*QCI -FSQII*QSI+FSQD21*QDCI-FSQDII*QDSI

@ +MULT4(FSQ22*QC2)-FSQI2*QS2+FSQD22*QDC2-FSQDI2*QDS2

@ +FSQ23*QC3 -FSQI3*QS3+FSQD23*QDC3+FSQDI3*QDS3

FG3=FGR3+FSQ31*Q01+FSQD31*QDOI

@ +FSQ32*QO2+FSQD32*QD02

@ +FSQ33*Q03+FSQD33*QD03 + FS03

MGI=MGRI+MSQII*QCI+MSQ21*QSI+MSQDII*QDCI+MSQD21*QDSI

@ +MSQI2*QC2+MSQ22*QS2+MSQDI2*QDC2+MSQD22*QDS2

@ +MSQI3*QC3+MSQ23*QS3+MSQDI3*QDC3+MSQD23*QDS3

MG2=_R2+MSQ21*QCI-MSQII*QSI+MSQD21*QDCI-MSQDII*QDSI

@ +MSQ22*QC2-MSQI2*QS2+MSQD22*QDC2-MSQDI2*QDS2

@ +MSQ23*QC3-MSQI3*QS3+MSQD23*QDC3-MSQDI3*QDS3

MG3=MGR3+MSQ31*Q01+MSQD31*QDOI

@ +MULT2(MSQ32*Q02)+MSQD32*QD02

@ +MSQ33*Q03+MSQD33*QD03
C

mW_D_--

C COMPUTE CORRECTIONS TO THE FLATWISE AND EDGEWISE MODAL QUANTITIES
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C THESECORRECTIONSWEREADDEDTOTHEMOD-0WINDTURBINEMODELTO
C ELIMINATENUMERICALINSTABILITIESWHICHAROSEWHENTHEROTORMODEL
C WASCOUPLEDTOTHEPOWERTRAINANDTHETOWERMODELS.
C_

C

"- (TOW-_Pa EQ ^" .........L._ • • V) _V uV OV_V

C

C ___A_ISE MODE:

C

C CORRECTION TO THE ACCELERATION

C

QDDIX _" .I * (- .596 * FG3 + •621 * SDDI + .332 * SI)

C

C CLEAN UP THE FLATWISE MODAL QUANTITIES

C

QDDIIA = QDDIIA + QDDIX

QDDIIB = QDDIIB + QDDIX

C

QDSAVA = QDIIA

QDSAVB = QDIIB

QDIIA = QDIIA + DTQ * QDDIX

QDIIB = QDIIB + DTQ * QDDIX

QIIA = QIIA + .4 * DTQ * (QDIIA-QDSAVA)

QIIB = QIIB + .4 * DTQ * (QDIIB-QDSAVB)

C

C CO_UTE THE CORRECT THRUST

C

FG3 = FG3 + .7453 * QDDIX

C

6010

C

C

CONTINUE

IF (PWRTRN .EQ. 0) GO TO 6020

C

C EDGEWISE MODE:

C

C CORRECTION TO THE ACCELERATION

C

MG3X = - MULT2 (MG3)

QDD2X = - MULT4 (.819*MG3X - .655"_0W) + .0453 * ZD

C

C CLEAN UP THE EDGEWISE MODAL QUANTITIES

C

QDDI2A = QDDI2A + QDD2X

QDDI2B = QDDI2B + QDD2X

C

QDSAVA = QDI2A

QDSAVB = QDI2B

QDI2A = QDI2A + DTQ * QDD2X

QDI2B = QDI2B + DTQ * QDD2X

QI2A = QI2A + .4 * DTQ * (QDI2A-QDSAVA)

QI2B = QI2B + .4 * DTQ * (QDI2B-QDSAVB)
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C COMPUTE THE CORRECT TORQUE

C

MG3 = - ( .5*MG3X + .1446*QDD2X)

C

6020 CONTINUE

C

C

C--

C COMPUTE ROOT LOADS OF BLADE # 1 IN SHANK AXES

C

C

C

C

C

C

FBLDI = FTEMI + FSQII*QIIA + FSQDII*QDIIA

@ + FSQI2*QI2A + FSQDI2*QDI2A

@ + FSQI3*QI3A + FSQDI3*QDI3A

FBLD2 = FTEM2 + FSQ21*QIIA + FSQD21*QDIIA

@ +MULT4(FSQ22*QI2A)+ FSQD22*QDI2A

@ + FSQ23*QI3A + FSQD23*QDI3A

FBLD3 = FTEM3 + FSQ31*QIIA + FSQD31*QDIIA

@ + FSQ32*QI2A + FSQD32*QDI2A

@ + FSQ33*QI3A + FSQD33*QDI3A

MBLDI = MTEMI + MSQII*QIIA + MSQDII*QDIIA

@ + MSQI2*QI2A + MSQDI2*QDI2A

@ + MSQI3*QI3A + MSQDI3*QDI3A

MBLD2 =MTEM2 + MSQ21*QIIA + MSQD21*QDIIA

@ + MSQ22*QI2A + MSQD22*QDI2A

@ + MSQ23*QI3A + MSQD23*QDI3A

MBLD3 = MTEM3 + MSQ31*QIIA +

@ +MULT2(MSQ32*QI2A)+

@ + MSQ33*QI3A +

C

C

C 1.17 GIMBAL TO HUB TRANSFORMATIONS

C

C

C

C

C

C

C

MSQD31*QDIIA

MSQD32*QDI2A

MSQD33*QDI3A

FCUI = CYC*FGI + SYC*FG2

FCU2 =-SYC*FGI + CYC*FG2

MCUI = CYC*MGI+SYC*MG2 - .025*ZU*FCU2

MCU2 =-SYC*MGI+CYC*MG2 + .025*ZU*FCUI

EGI = MCU2

FTI = FCUI +MULT2(QGI*FG3)

MTI = MCUI + .05*QGI*MG3 + .025*ZU*FCU2

MT2 = MCU2 - .025*ZU*FTI

FHI ffiCYT*FTI - SYT*FCU2

FH2 ffiSYT*FTI + CYT*FCU2

FH3 = MULT2 (FG3 - .02*QGI*FCUI)

+ FS02

+ FS03

+ MS01

+ MS02

+ MS03
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MHI " CYT*MTI- SYT*MT2
MH2= SYT*MTI+ CYT*MT2
MH3="MG3- •8*QGI*MCUI

C
C 1.18 GIMBALSERVOINTEGRATOR.
C

QDDGI-KGE*EGI+KGQC*QCI+KGQS*QSI
@ +KGVC*QDCI+KGVS*QDS1

C

C
C
C
C

QSGI=QGI

DUMI4=ZP*QDGI
DUM151ZP*QDDGI
DUMI6--ZP*QSGI
DUMIT'ZP*QDDGI

QGI=GQQ*QSGI+GQV*QDGI+GQZV*DUMI4
@ +GQA*QDDGI+GQZA*DUMI5

QDGI=GVV*QDGI+GVQ*QSGI+GVZQ*DUMI6
@ +GVA*QDDGI+GVZA*DUMI7

ENDTHEROTORMODEL.
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C
C 2.0 SUPPORTSYSTEMEQUATIONS.
C

IF (TOWER.EQ. O) GOTO2010
C
C MODELWITHTHREENORMALMODESFORSURGE,SWAY,ANDYAW(TORSION).
C
C GENERALIZEDFORCINGFUNCTIONS
C

GSI _ GSFII*FHI + GSFI3*FH3+ GSMI2*MH2
GS2., GSF22*FH2+ GSM23*MPOD
GS3=" GSF32*FH2 + MULT2(GSM31*MHI)

C

C MODAL ACCELERATIONS

C

SDDI =" GSI - DSlI*SDI - W2SII*SI

SDD2 =, GS2 - DS22*SD2 - W2S22"$2

SDD3 = GS3 - DS33*SD3 - W2S33"$3

C

C NUMERICAL INTEGRATION OF MODAL COORDINATES

C

SDI = SDI + .2*SDDI*DTS

SD2 -- SD2 + .2*SDD2*DTS

SD3 = SD3 + .4*SDD3*DTS

S1 = S1 + SDI*DTS

$2 = $2 + SD2*DTS

$3 = $3 + SD3*DTS

C

C TRANSLATIONAL VELOCITY

C

VHI - VBHI + SVII*SDI

VH2 - VBH2 + SV22*SD2 + .5*SV23*SD3

VH3 = VBH3 + SV31*SDI

C

C ROTATIONAL VELOCITY

C

WHI = WBHI + .5*SWI3*SD3

WH2 = WBH2 + SW21*SDI

WH3 _ WBH3 + SW32*SD2

C

C TIME DERIVATIVE OF TRANSLATIONAL VELOCITY

C

VDHI = VDBHI + SVII*SDDI

VDH2 = VDBH2 + SV22*SDD2 + SV23*SDD3

VDH3 = VDBH3 + SV31*SDDI

C

C TIME DERIVATIVE OF ROTATIONAL VELOCITY

C

C

2010

C

WDHI = WDBHI + SWI3*SDD3

WDH2 = WDBH2 + SW21*SDDI

WDH3 = WDBH3 + SW32*SDD2

CONTINUE
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C
C 3.0-CONTROLSYSTEM
C

IF (CONTRL.EQ. 0) GQTO3010

ZERR= MULT4 (SRQ - Z)

ADI = AZI * ZERR

AD2 = AA21*AI - AA22*A2 + AZ2 * ZERR

AD3 = AG3*ZA + AD03

C

C NUMERICAL INTEGRATION

C

A1 = A1 + DTCI * ADI

A2 =, A2 + MULT2 (DTC2 * AD2)

A3 = A3 + DTC3 * AD3

C

C RESULTS

C

C1 = CAI2*A2

C2 = 0

C3 = 0

C

3010

C

CONTINUE

LGC = MULT2 (LAI3*A3 + LPR*PRQ + LG*ZA)
C

C

C 4.0 - POWER TRAIN

C

IF (PWRTRN .EQ. 0) GO TO 4010
C

C THE EQUATIONS SHOWN HERE FOR THE POWER TRAIN MODEL ARE THE SPECIALIZED

C FORMS USED IN THE MOD-O SIMULATION. THESE SPECIAL FORMS WERE NEEDED TO

C ELIMINATE THE NUMERICAL INSTABILTY OBSERVED DURING THE COUPLING OF THE
C ROTOR AND THE POWER TRAIN MODELS.

C

C ACCELERATIONS.

C

PDDI = ZD - MULT2(.5787*QDD2X)

PDD2 = .I*PDDI-.5674*I_OW+BP21*PDI-BP22*PD2+MULT2(.7095*LGC)
C

C NUMERICAL INTEGRATION.
C

PDI = PDI + PDDI * DTPI

PD2 = PD2 + PDD2 * DTP2

P2 = P2 + .5*PD2 * DTP2
C

C FIND THE TORQUES APPLIED BY THE POWER TRAIN TO THE ROTOR & THE TOWER
C

MPOW = MULT2 (.784 * P2) + BPOWI * PDI + BPOW2 * PD2

MPOD = - BPODI*PDI + BPOD2*PD2 - LGC
C

C OUTPUTS

C

ZD = PDDI

H-26



C
4010

C

Z = PDI

ZP= MULT2 (Z-.5)

ZA = PDI - .I*PD2

CONTINUE

C RATE RESOLVER:

C TO AVOID OVER/UNDER FLOW PROBLEMS COMPUTE ONE HALF OF THE SINE AND

C COSINE OF THE ROTOR AZIMUTHAL ANGLE, AND THEN DOUBLE THE RESULTS.
C

SYHAF = .5*SY

CYHAF = .5*CY

C

SDY = ZP*DT + DT

C

C COMPUTE AMPLITUDE ERROR

C

EA = SYHAF*SYHAF + CYHAF*CYHAF - .25

C

C MAKE CORRECTION

C

CDY = CDY - .5*EA
C

C SET UP ADVANCE

C

CYSAV = CYHAF

CYHAF = (CYHAF*CDY+CYHAF*CDY) - SYHAF*SDY

SYHAF = (SYHAF*CDY+SYHAF*CDY) + CYSAV*SDY
C

CY = MULT2 (CYHAF)

SY = MULT2 (SYHAF)

C

C

C 5.0 AIR MASS.

C

C RETARDATION VELOCITY

C

IF (RETARD .EQ. 0) GO TO 5010

C

5010

C

C

ERROR FUNCTION

EVR = .04 -MULT4 ( RV*RV * (VAH2*VAH2 + VAH3*VAH3) )

CORRECTION SERVO

RV = RV +MULTI6 (EVR*GCEV)

RETARDATION

VRW = KAR * FH3 * RV * RHOR

CONTINUE

C WINDGUST RANDOM SIGNALS
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C
5020

C

IF (GUSTS.EQ. 0) GOTO5020

EQUATIONSWHICHFOLLOWUSEA RANDOMNUMBERGENERATORWHICH
APPEARSASA WHITENOISESOURCETOEACHFILTEREQUATION.

,QDDGUI=RANDOM(IGNORE) -ZTGII*WGGII*QDGUI -WGGII*WGGII*QGUI

QDDGU2=RANDOM(IGNORE) -ZTG22*WGG22*QDGU2 -WGG22*WGG22*QGU2

QDDGU3=RANDOM(IGNORE) -ZTG33*WGG33*QDGU3 -WGG33*WGG33*QGU3

QDDGU4=RANDOM(IGNORE) -ZTG44*WGG44*QDGU4 -WGG44*WGG44*QGU4

QDDGU5=RANDOM(IGNORE) -ZTG55*WGG55*QDGU5 -WGG55*WGG55*QGU5

QDDGU6=RANDOM(IGNORE) -ZTG66*WGG66*QDGU6 -WGG66*WGG66*QGU6

NUMERICAL INTEGRATION OF WINDGUST FILTERS.

QDGUI=QDGUI+QDDGUI*DTG

QDGU2=QDGU2+QDDGU2*DTG

QDGU3=QDGU3+QDDGU3*DTG

QDGU4=QDGU4+QDDGU4*DTG

QDGU5=QDGU5+QDDGU5*DTG

QDGU6=QDGU6+QDDGU6*DTG

QGUI=QGUI+QDGUI*DTG

QGU2=QGU2+QDGU2*DTG

QGU3=QGU3+QDGU3*DTG

QGU4=QGU4+QDGU4*DTG

QGU5=QGU5+QDGU5*DTG

QGU6=QGU6+QDGU6*DTG

OUTPUTS

VGI=VGUII*QDGUI

VG2=VGU22*QDGU2

VG3=VGU33*QDGU3

WGI=WGUII*QDGU4

WG2=WGU22*QDGU5

WG3=WGU33*QDGU6

CONTINUE

C PRIMARY WIND SIGNALS

C

VWTI=VWI+VGI

VWT2=VW2+VG2

VWT3=VW3+VG3

C

C

C

WWTI=WWI+WGI

WWT2=WW2+WG2

WWT3=WW3+WG3

VWTI=VWTI+VRW
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C INTERFERENCE EFFECTS: FOR CONVENIENCE_ TOWER SHADOW AND WINDSHEAR

C HAVE BEEN INCLUDEDIN THE ROTOR MODEL.
C

C PASS THROUGH MODELS IS COMPLETE
C

C************ BOTTOM OF INFINITE LOOP ********************
C

GO TO 9000
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